GOMPUTER SCIENCE & ENGINEERING

EECS498-003
Formal Verification of
Systems Software

Material and slides created by

Jon Howell and Manos Kapritsos

GOMPUTER SCIENCE & ENGINEERING

Chapter 3: State Machines

Building state machines

A state is an assignment of values to variables
An action is a transition from one state to another
An execution is a sequence of states

We will capture executions with state machines

GOMPUTER SCIENCE & ENGINEERING

Building state machines

A state is an assignment of values to variables
An action is a transition from one state to another
An execution is a sequence of states

We will capture executions with state machines

GOMPUTER SCIENCE & ENGINEERING

OO

COMPUTER SCIENCE & ENGINEERING

The Switch state machine

Deactivate Deactivate, Toggle

Activate Activate Toggle Toggle

GOMPUTER SCIENCE & ENGINEERING

The Switch state machine

Activate Qredicate Activate(v:Variables, v':Variables)

oggle Activ

v'.switch == On

dicate_Deactivate(v:Variables,
':Var?ables? E (

v'.switch == Off

}
Deactivate Deactivate, predlcatelToggle(v:Varlables, v':Variables) {
v'.switch != v.switch

Toggle }
datatype SwitchState = On | Off predicate Next(v:Variables, v':Variables) {
datatype Variables = || Sct1¥§teiv, V')I

Variables(switch:SwitchState) II TESSléYS eéYS v

predicate Init(v:Variables) { } '

v.switch == Off
}

COMPUTER SCIENCE & ENGINEERING

The Game of Nim

COMPUTER SCIENCE & ENGINEERING

The Nim state machine

datatype Variables = Variables(tokens:nat)
predicate Init(v:Variables) {
v.tokens > 0

}

predicate Play(v:Variables, v':Variables, take:nat) {
& 1 <= take <= 4 > enabling condition
& v'.tokens == v.tokens - take } ‘“update”

}

predicate Next(v:Variables, v':Variables)

{
}

exists take :: Play(v, v', take)

PPPPPPP

\/ COMPUTER SEIENE(\& ENGINEERING
Play(4)

=l

iJ

R 4 N\ \ ([\
- N N

s |

|

GOMPUTER SCIENCE & ENGINEERING

Administrivia
* Remember that Problem Set 1 is due next Thursday, September 19

* My office hours today were moved to 5-6pm

COMPUTER SCIENCE & ENGINEERING
A simple library app

datatype Card = Shelf | Patron(name:
string)

datatype Book = Book(title: string)
type Variables = map<Book, Card>

Small-library rule: each patron can have at most one book checked out

COMPUTER SCIENCE & ENGINEERING

A state is an assighment of values to variables

datatype Card = Shelf | Patron(name:
string)

datatype Book = Book(title: string)
type Variables = map<Book, Card>

The state space is the set of possible assignments.

The Martian: Shelf
White Fang: Shelf

The Martian: Shelf
White Fang: Jon

The Martian: Manos
White Fang: Jon

COMPUTER SCIENCE & ENGINEERING

An execution is an infinite sequence of states
check out C t check in check out

N N, >
> > >

The Martian: Shelf The Martian: Shelf The Martian: Manos The Martian: Shelf The Martian: Rob

White Fang: Shelf White Fang: Jon White Fang: Jon White Fang: Jon White Fang: Jon
check out C ' check out check in

The Martian: Shelf The Ma;tian: Jon The Martian: Shelf The Ma:ﬁan: Rob The Mar;ian: Shelf

White Fang: Shelf White Fang: Shelf White Fang: Shelf White Fang: Shelf White Fang: Shelf
check out 27?7

>, > >
> > >

The Martian: Shelf The Martian: Shelf The Martian: Shelf
White Fang: Shelf White Fang: Jon White Fang: Rob

COMPUTER SCIENCE & ENGINEERING

ible executions

check in check out

A behavior is the set o

check out

check out

N N >
> > >

The Martian: Shelf The Martian: Shelf The Martian: Manos The Martian: Shelf The Martian: Rob

White Fang: Shelf White Fang: Jon White Fang: Jon White Fang: Jon White Fang: Jon
check out check in check out check in

The Martian: Shelf The Ma;t‘ian: Jon The Martian: Shelf The Ma:tian: Rob The Mar;ian: Shelf

White Fang: Shelf White Fang: Shelf White Fang: Shelf White Fang: Shelf White Fang: Shelf
check out 27?7

The Martian: Shelf I The Martian: Shelt [~ -----‘I
White Fang: She il ETTE " J0N White Fang: Rob 14

COMPUTER SCIENCE & ENGINEERING

Shelf | Patron(name:

A state machine definitior .c.cpe caro

string)
datatype Book

Book(title: string)

forall book | book in v :: v[book] == Shelf
}
predicate CheckQOut(v : Variables, v’ : Variables, book: Book, name: string) {
&& book in v
& vlbook] == Shelf } enabling condition
&& (forall book | book in v :: v[book] != Patron(name)) 5
} & v’ == v[book := Patron(name)] >. “update”
predicate CheckIn(v : Variables, v’ : Variables, book: Book, name: string) {
&& book in v
&& v[book] == Patron(name)
&& v’ == v[book := Shelf]
}
predicate Next(v: Variables, v’: Variables) { C e .
|| (exists book, name :: CheckOut(v, v’, book, name)) Nondeterministic
|| (exists book, name :: CheckIn(v, v’, book, name)) definition

}

COMPUTER SCIENCE & ENGINEERING

A behavior is the set of all possible executions

predicate CheckOut(v, v’, book, name) {

&& book 1n v

&& v[book] == Shelf

&& (forall book | book in v :: v[book] !=
Patron(name))

& v’ == v[book := Patron(name)]
}

predicate CheckIn(v, v’, book, name) {
&& book 1n v
&& v[book] == Patron(name)
& v’ == v[book := Shelf]

}

check out 277

The Martian: Shelf I The Martlan She - ----~l
White Fang: She Wh|te Fang: Rob

'COMPUTER SCIENCE & ENGINEERING
How should we define a behavior?

With a program?

Its variables define its state space
Its executions define its behavior

Weaknesses:

® concreteness

® nondeterminism
® asynchrony

® environment

GOMPUTER SCIENCE & ENGINEERING

How should we define a behavior?

With a state machine

Its type defines its state space
Its initial states and transitions define its behavior

GOMPUTER SCIENCE & ENGINEERING

State machine strengths

* Abstraction

* States can be abstract
* Model an infinite map instead of an efficient pivot table
* Next predicate is nondeterministic:

* Implementation may only select some of the choices
* Can model Murphy'’s law (e.g. crash tolerance) or an adversary

GOMPUTER SCIENCE & ENGINEERING

State machine strengths

* Asynchrony
* Each step of a state machine is conceptually atomic
* Interleaved steps capture asynchrony: threads, host processes, adversaries
* Designer decides how precisely to model interleaving; can refine/reduce

GOMPUTER SCIENCE & ENGINEERING

State machine strengths

* Environment
* Model a proposed program with one state machine (verified)
* Model (adversarial) environment with another (trusted)
* Compound state machine models their interactions (trusted)

System (environment assumption) Distributed System (environment assumption)
Filesystem Disk Host | Network
(program to verify) (environment (program to verify) (environment
pros Y assumption) assumption)

	EECS498-003 Formal Verification of Systems Software
	Chapter 3: State Machines
	Building state machines
	Building state machines (2)
	The Switch state machine
	The Switch state machine
	The Game of Nim
	The Nim state machine
	Slide 9
	Administrivia
	A simple library app
	A state is an assignment of values to variables
	An execution is an infinite sequence of states
	A behavior is the set of all possible executions
	A state machine definition
	A behavior is the set of all possible executions
	How should we define a behavior?
	How should we define a behavior? (2)
	State machine strengths
	State machine strengths (2)
	State machine strengths (3)

