
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

EECS498-003 2

Chapter 3: State Machines

9/12/24

EECS498-003

Building state machines

A state is an assignment of values to variables

An action is a transition from one state to another

An execution is a sequence of states

We will capture executions with state machines

3

x=1
y=1

x=1
y=2

9/12/24

EECS498-003

Building state machines

A state is an assignment of values to variables

An action is a transition from one state to another

An execution is a sequence of states

We will capture executions with state machines

4

A B

A B C D

9/12/24

The Switch state machine

5

off on

Activate

Deactivate, Toggle

Activate, Toggle

Deactivate

Activate Activate Toggle Toggle

off on on off on

EECS498-003

The Switch state machine
predicate Activate(v:Variables, v':Variables)
{
 v'.switch == On
}
predicate Deactivate(v:Variables,
v':Variables) {
 v'.switch == Off
}
predicate Toggle(v:Variables, v':Variables) {
 v'.switch != v.switch
}
predicate Next(v:Variables, v':Variables) {
 || Activate(v, v')
 || Deactivate(v, v')
 || Toggle(v, v')
}

6

off on

Activate

Deactivate,
Toggle

Activate,
Toggle

Deactivate

datatype SwitchState = On | Off

datatype Variables =

Variables(switch:SwitchState)
predicate Init(v:Variables) {
 v.switch == Off
}

9/12/24

The Game of Nim

7

11 7

Play(3)

10

Play(1)

5

Play(2)

1

Play(4)

EECS498-003

The Nim state machine
datatype Variables = Variables(tokens:nat)
predicate Init(v:Variables) {
 v.tokens > 0
}

predicate Play(v:Variables, v':Variables, take:nat) {
 && 1 <= take <= 4
 && v'.tokens == v.tokens - take
}

predicate Next(v:Variables, v':Variables)
{
 exists take :: Play(v, v', take)
}

8

enabling condition
“update”

9/12/24

9

11 7

Play(3)

10

Play(1)

5

Play(2)

1

Play(4)

11 10 9 8 7

0

11 10 11 8 7

!Init()

!Next()

EECS498-003 10

Administrivia

9/12/24

• Remember that Problem Set 1 is due next Thursday, September 19

• My office hours today were moved to 5-6pm

EECS498-003 11

A simple library app

9/12/24

datatype Card = Shelf | Patron(name:
string)
datatype Book = Book(title: string)
type Variables = map<Book, Card>

Small-library rule: each patron can have at most one book checked out

A state is an assignment of values to variables

The state space is the set of possible assignments.

The Martian: Shelf
White Fang: Shelf

The Martian: Shelf
White Fang: Jon

The Martian: Jon
White Fang: Jon

The Martian: Manos
White Fang: Jon

datatype Card = Shelf | Patron(name:
string)
datatype Book = Book(title: string)
type Variables = map<Book, Card>

12

An execution is an infinite sequence of states

The Martian: Shelf
White Fang: Shelf

The Martian: Shelf
White Fang: Jon

The Martian: Manos
White Fang: Jon

The Martian: Shelf
White Fang: Jon

The Martian: Rob
White Fang: Jon

check out check out check in check out

The Martian: Shelf
White Fang: Shelf

The Martian: Jon
White Fang: Shelf

The Martian: Shelf
White Fang: Shelf

The Martian: Rob
White Fang: Shelf

The Martian: Shelf
White Fang: Shelf

check out check in check out check in

The Martian: Shelf
White Fang: Shelf

The Martian: Shelf
White Fang: Jon

The Martian: Shelf
White Fang: Rob

check out ???

13

A behavior is the set of all possible executions

The Martian: Shelf
White Fang: Shelf

The Martian: Shelf
White Fang: Jon

The Martian: Manos
White Fang: Jon

The Martian: Shelf
White Fang: Jon

The Martian: Rob
White Fang: Jon

check out check out check in check out

The Martian: Shelf
White Fang: Shelf

The Martian: Jon
White Fang: Shelf

The Martian: Shelf
White Fang: Shelf

The Martian: Rob
White Fang: Shelf

The Martian: Shelf
White Fang: Shelf

check out check in check out check in

The Martian: Shelf
White Fang: Shelf

The Martian: Shelf
White Fang: Jon

The Martian: Shelf
White Fang: Rob

check out ???

14

predicate Init(v: Variables) {
 forall book | book in v :: v[book] == Shelf
}
predicate CheckOut(v : Variables, v’ : Variables, book: Book, name: string) {
 && book in v
 && v[book] == Shelf
 && (forall book | book in v :: v[book] != Patron(name))
 && v’ == v[book := Patron(name)]
}
predicate CheckIn(v : Variables, v’ : Variables, book: Book, name: string) {
 && book in v
 && v[book] == Patron(name)
 && v’ == v[book := Shelf]
}
predicate Next(v: Variables, v’: Variables) {
 || (exists book, name :: CheckOut(v, v’, book, name))
 || (exists book, name :: CheckIn(v, v’, book, name))
}

A state machine definition

Nondeterministic
definition

enabling condition

“update”

15

datatype Card = Shelf | Patron(name:
string)
datatype Book = Book(title: string)
type Variables = map<Book, Card>

A behavior is the set of all possible executions

16

The Martian: Shelf
White Fang: Shelf

The Martian: Shelf
White Fang: Jon

The Martian: Shelf
White Fang: Rob

check out ???

predicate CheckOut(v, v’, book, name) {
 && book in v
 && v[book] == Shelf
 && (forall book | book in v :: v[book] !=
Patron(name))
 && v’ == v[book := Patron(name)]
}
predicate CheckIn(v, v’, book, name) {
 && book in v
 && v[book] == Patron(name)
 && v’ == v[book := Shelf]
}

How should we define a behavior?
With a program?

Its variables define its state space
Its executions define its behavior

Weaknesses:
● concreteness
● nondeterminism
● asynchrony
● environment

17

How should we define a behavior?
With a state machine

Its type defines its state space
Its initial states and transitions define its behavior

18

EECS498-003

State machine strengths
• Abstraction
• States can be abstract

• Model an infinite map instead of an efficient pivot table
• Next predicate is nondeterministic:

• Implementation may only select some of the choices
• Can model Murphy’s law (e.g. crash tolerance) or an adversary

199/12/24

EECS498-003

State machine strengths
• Abstraction
• Asynchrony
• Each step of a state machine is conceptually atomic
• Interleaved steps capture asynchrony: threads, host processes, adversaries
• Designer decides how precisely to model interleaving; can refine/reduce

209/12/24

EECS498-003

 Distributed System (environment assumption)

State machine strengths
• Abstraction
• Asynchrony
• Environment
• Model a proposed program with one state machine (verified)
• Model (adversarial) environment with another (trusted)
• Compound state machine models their interactions (trusted)

21

 System (environment assumption)

Filesystem
(program to verify)

Disk
(environment
assumption)

Host
(program to verify)

Network
(environment
assumption)

9/12/24

	EECS498-003 Formal Verification of Systems Software
	Chapter 3: State Machines
	Building state machines
	Building state machines (2)
	The Switch state machine
	The Switch state machine
	The Game of Nim
	The Nim state machine
	Slide 9
	Administrivia
	A simple library app
	A state is an assignment of values to variables
	An execution is an infinite sequence of states
	A behavior is the set of all possible executions
	A state machine definition
	A behavior is the set of all possible executions
	How should we define a behavior?
	How should we define a behavior? (2)
	State machine strengths
	State machine strengths (2)
	State machine strengths (3)

