
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

EECS498-003 29/10/24

EECS498-003 3

Recursion: exporting ensures

function Evens(count:int) : (outseq:seq<int>)

 ensures forall idx :: 0<=idx<|outseq| ==> outseq[idx] == 2 * idx

{

 if count==0 then [] else Evens(count) + [2 * (count-1)]

}

9/10/24

VSCode transition

EECS498-003 4

Karma is a word.
Another way of
saying “What I
am here to do”

Chapter 2: Specification

Specificati
on

9/10/24

EECS498-003 5

How to specify our programs

Attempt #1: Just tell your programmers what you want them to code

Writing is nature's way of letting you know how sloppy your thinking is
-Dick Guindon

9/10/24

EECS498-003 6

How to specify our programs

Attempt #2: Write down an English description (aka a design doc)

Mathematics is nature's way of letting you know how sloppy your
writing is

-Leslie Lamport

Formal mathematics is nature's way of letting you know how sloppy
your mathematics is

-Leslie Lamport

9/10/24

EECS498-003 7

Formal specification

A way to define formally (i.e. precisely) what your program should do

Before you start writing code, make sure you know what code is
supposed to be doing

Before you start writing a proof, make sure you know what you are
proving

9/10/24

EECS498-003 8

Specification

A specification defines which executions are allowable

lemma Double(x:int) returns (y:int)
 ensures y == 2*x
{
 ...
}

(x=1, y=2)
(x=2, y=4)
(x=2, y=2)

(x=-3, y=-6)
(x=-2, y=4)

9/10/24

EECS498-003 9

Ways to specify what the program should do

• C-style assertions

• Postconditions

• Properties/invariants

• Refinement

lemma Double(x:int) returns
(y:int)
 ensures y == 2*x
{
 y := 2*x;
}

y = 2*x;
assert(y==2*x)

“At most one node holds the lock at any time”

• Linearizability
• Equivalence to logically centralized service

9/10/24

EECS498-003 10

Specification is trusted

Formal verification: proving that your protocol or implementation
meets the spec

You cannot prove that the spec is correct

You have to trust your spec

Your proof is as good as your spec

A wrong spec is one of the few ways to introduce
bugs into formally verified code

9/10/24

11

Check your spec

1. Check your spec!
2. Check your spec!
3. Check your spec!
4. Check your spec!
5. Check your spec! Now that should be your 1st,

2nd
, 3rd, 4th and 5th concern!

12

Research detour: IronSpec (OSDI ‘24)

• A methodology and tool to find bugs in formal specifications
• Found multiple spec bugs in real-world Dafny codebases

EECS498-003 13

The benefit of specification

The spec is typically much smaller than the code
• So we have to inspect a few lines of code only

Dijkstra’s algorithm spec
IsShortestPath(g, p) {

&& IsPath(g, p)
&& forall p2 :: IsPath(g, p2) ==> |p| <= |p2|

}

9/10/24

EECS498-003 14

A good spec

A good spec is correct/complete
• It precludes all undesirable behaviors

Example: IsMaxIndex
predicate IsMaxIndex(a:seq<int>, x:int) {

 && 0 < x < |a|

 && (forall i | 0 < i < |a| :: a[i] <= a[x])

}

9/10/24

EECS498-003 15

A good spec (cont.)

A good spec is concise
• It elides every irrelevant concept
• Is simple and easy to read

predicate IsMaxIndex(a:seq<int>, x:int) {

 && 0 <= x < |a|

 && (forall i | 0 <= i < |a| :: a[i] <= a[x])

}

9/10/24

EECS498-003 16

A good spec (cont.)

A good spec is abstract
• It doesn’t constrain the implementation

Dijkstra’s algorithm spec
IsShortestPath(g:Graph, p:Path) {

&& IsPath(g, p)
&& forall p2 :: IsPath(g, p2) ==> |p| <= |p2|

}

9/10/24

EECS498-003 17

Edsger W. Dijkstra
• 1972 Turing Award winner
• Inventor of:
• Dijkstra’s shortest path algorithm
• Semaphores
• The THE operating system
• Banker’s algorithm

• “Progress is possible only if we train ourselves to
think about programs without thinking of them as
pieces of executable code.”

9/10/24

EECS498-003 18

Verification and the “eradication” of bugs

Frequent quote from verification experts
• “We prove that there are no bugs at all…”

Frequent quote from verification skeptics
• “Nonsense! You can still have bugs in your spec”

The truth is somewhere in the middle
• Yes, your spec may have bugs
• But do you prefer inspecting 30 lines for bugs or 30000?

9/10/24

EECS498-003 19

Autograder submissions

• Reminder: PS1 deadline is September 19

• Dafny timeouts/out of resource
• dafny /trace
• dafny /rlimit:32700000

• Remember to pull the code repo for the starter code of examples
presented in class

9/10/24

EECS498-003 20

Some new Dafny syntax

9/10/24

Datatype member functions

datatype Pet = Dog | Cat | Ant | Spider {
 function CountLegs() : int {
 match this
 case Dog => 4
 case Cat => 4
 case Ant => 6
 case Spider => 8
 }
}

function ShoesForTwo(pet: Pet) : int {
 2 * pet.CountLegs()
}

EECS498-003 21

Calc statements

assert a == b;
assert b == c;
assert c == d;

calc {
 a;
 b;
 c;
 d;
}

Some new Dafny syntax

9/10/24

EECS498-003 22

Calc statements

assert a == b;
assert b == c;
assert c == d;

calc {
 a;
 { MyUsefulLemma(a,b); }
 b;
 c;
 d;
}

Some new Dafny syntax

9/10/24

EECS498-003 23

Calc statements

assert a == b;
assert b == c;
assert c == d;

calc ==> {
 a;
 { MyUsefulLemma(a,b); }
 b;
 c;
 d;
}

Some new Dafny syntax

9/10/24

EECS498-003 24

Choose operator

assert 1 % 7 == 1;
assert exists x :: x % 7 == 1;
var x :| x % 7 == 1;

Choose x such that...

Some new Dafny syntax

9/10/24

	EECS498-003 Formal Verification of Systems Software
	Slide 2
	Recursion: exporting ensures
	Chapter 2: Specification
	How to specify our programs
	How to specify our programs (2)
	Formal specification
	Specification
	Ways to specify what the program should do
	Specification is trusted
	Check your spec
	Research detour: IronSpec (OSDI ‘24)
	The benefit of specification
	A good spec
	A good spec (cont.)
	A good spec (cont.) (2)
	Edsger W. Dijkstra
	Verification and the “eradication” of bugs
	Autograder submissions
	Some new Dafny syntax
	Some new Dafny syntax (2)
	Some new Dafny syntax (3)
	Some new Dafny syntax (4)
	Some new Dafny syntax (5)

