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COMPUTER SCIENCE & ENGINEERING

Revisiting the distributed system model

» Composite state machine Distributed system
* Hosts -
. Network Host Network
* Time | Time
1

In each step of this state machine:
* at most one Host takes a step, together with the Network
* or Time advances

0~ 0-0-0-0
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'COMPUTER SCIENCE & ENGINEERING
A distributed execution in real life

RLIRELESSS | =S LER{L RESSESEH |

Reason about all possible
interleavings of the substeps?

E Receive !Local processing ! Send



COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Enforce that all receives precede all sends

RLIRELESSS | =S LER{L RESSESEH |

Assume in proof that all host steps are atomic

I | I
W |

u Receive !Local processing ! Send
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Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

E Receive !Local processing ! Send



COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

...there is a corresponding legal trace with atomic host steps

LERIL RESSESES | RELEILES LES LN L

RLIRELESSEH| S

E Receive !Local processing ! Send
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'COMPUTER SCIENCE & ENGINEERING
The concept of “movers”

Actual execution

.

Indistinguishable -
execution

E Receive !Local processing ! Send
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'COMPUTER SCIENCE & ENGINEERING
Local computations can move either way

Actual execution

Indistinguishable
execution [

y=1 I
E Receive !Local processing ! Send
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COMPUTER SCIENCE & ENGINEERING
Receives are right movers

Actual execution _ _ ?
[ [

Indistinguishable _ _ —
Eﬂj

xecution " (E
y=1 S
E Receive !Local processing ! Send
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Receives are not left movers

Actual execution

IndistingUi
execution

E Receive !Local processing ! Send
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'COMPUTER SCIENCE & ENGINEERING
Sends are left movers

- -
Actual execution
Eﬂ:]

ﬂ] [ ]J [
E Receive !Local processing ! Send
EECS498-003

Indistinguishable
execution [
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Sends are not right movers

Actual execution
- |

IndistingUi
execution

E Receive !Local processing ! Send
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COMPUTER SCIENCE & ENGINEERING
Summary of movers

* Local computation moves both ways
* Sends move to the left
* Receives move to the right
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Creating the atomic trace
l l

RLRY RS LS LIRILR|[|STST L

E Receive !Local processing ! Send



COMPUTER SCIENCE & ENGINEERING
Creating the atomic trace

R L LES

We can keep moving individual instructions to the left/right, until the
entire action is atomic (i.e. does not interleave with other actions)

E Receive !Local processing ! Send
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COMPUTER SCIENCE & ENGINEERING
The atomic trace is legal

Local event ordering is preserved

Yo
AN

Packets are never received before they’re sent

E Receive !Local processing ! Send
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The atomic trace preserves failures

Real trace

RLIRELESSS | =S LER{L RESSESEH |

Reduced tracel

| .
m

u Receive !Local processing ! Send




COMPUTER SCIENCE & ENGINEERING

Reading the clock is a “non-mover”

You can only have one of these,
and it must be the “atomic point”
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Reduction quiz

Which of the following actions are amenable to reduction?

A. i

You can only have one clock read,

B. and it must be the “atomic point”
C.
b Receives before Clock,

Sends after Clock

02/07/2025 EECS498-003 21



Reduction-enabling obligation

* Each action should be of the form:
e R* C?S*
* j.e., Receives then Clock then Sends
* with local actions interspersed between them

02/07/2025 EECS498-003
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Administrivia

* PS4 (Chapter 6 - Refinement) is due next week

Final exam

on Dec 18
Project 1 Project 2 |
10/31 11/7 11/14 11/21 11/28 12/5 12/12 12/19

LJ

YOU ARE HERE
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'COMPUTER SCIENCE & ENGINEERING
Synchronous specs

module MapSpec {
datatype Variables = Variables(mapp:map<Key, Value>)

predicate InsertOp(v:Variables, v':Variables, key:Key,
value:Value) {

, .

predicate QueryOp(v:Variables, v':Variables, key:Key,
output:Value) {

1
J

}

Insert Insert Insert

U | O o >

Query Query




Synchronous specs

COMPUTER SCIENCE & ENGINEERING

Client 1
o ® >
Client 2
—9 e >
Insert Insert Insert
Server A= v,
v 6 d >

Query Query

02/07/2025 EECS498-003
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Asynchrony in real life

Client 1 SendRequest ReceiveReply

? @ »
Client 2 [ Send;equest Re7veReply |
Server X
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Linearizability

SendRequest ReceiveReply

— »
[ @ SendRequest ReceiveReply
‘_? »
Insert(x,7)
Query(x)
Server N
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Linearizability
SendRequest ReceiveReply
@ >
SendRequest/ ReceiveReply )
| /
Insert(x,7) l
Query(x)
Server N
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The limitation of Synchronous specs

Client 1

.A - »
Client 2
ien H . )
Server Ins';rt Insert Insert
] O O >
Query Query
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The answer: more events!

Instead of:
Server Insert
% »
Use this:
Server AcceptRequest ProcessRequest DeliverReply

@ @ >

N

This is a NoOp event!
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Example run

SendRequest ReceiveReply
@ @ >

A

SendRequest ReceiveReply
O @ >

A

Insert(x,7)| Query(x)

Server ‘ \J\_/‘\/ ® >

AcceptRequest DeliverReply AcceptRequest DeliverReply
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Example run #2

SendRequest ReceiveReply

@ >

*

SendRequest ReceiveReply
- @ >
A
Insert(x,7) Query(x)

Server ‘ ‘ ‘ ® >

AcceptRequest  AcceptRequest DeliverReply DeliverReply
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Example run #2

SendRequest ReceiveReply

@ >

*

SendRequest ReceiveReply
- @ >
A
Insert(x,7) Query(x)

Server ‘ ‘ ‘ ® >

AcceptRequest  AcceptRequest DeliverReply DeliverReply
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'COMPUTER SCIENCE & ENGINEERING
Administrivia

* No class this Monday, 04/08

* No lab this Friday, extra OH instead
* Keshav will make an announcement with the exact time on Piazza

* Final exam logistics
* Time: May 2, 8-10am
* Location: This classroom, COOL G906
* If you have special accommodations, | will email you about the time/place
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Dafny: finite set heuristics

predicate IsEven(x:int) {

X/2*2==X
}
predicate IsModest(x:int) {
0 <= x < 10
}
lemma IsThisSetFinite() {
var modestEvens := set x | IsModest(x) &&
IsEven(x);

assert modestEvens == {0,2,4,6,8};

}

Error: the result of a set comprehension must be finite, but Dafny's
heuristics can't figure out how to produce a bounded set of values for 'x'




GOMPUTER SCIENCE & ENGINEERING

Dafny: finite set heuristics

predicate IsEven(x:int) {
X/2*2==X
}

predicate IsModest(x:int) {
0 <= x < 10

}

function ModestNumbers() : set<int> {
set x | 0 <= x < 10

}
lemma IsThisSetFinite() {

var modestEvens := set x | x in ModestNumbers() &&
IsEven(x);

assert modestEvens == {0,2,4,6,8};
}
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Refinement (down to an implementation)

Imple:mentatlon :

15 n@n%%%
o

OOOOOOOOOOOOOOOOOOOOO



'COMPUTER SCIENCE & ENGINEERING
Example: Map spec

datatype Variables = Variables (mapp:map<Key, Value>)

predicate SpecInit(v:Variables)

{

v == map/[]
}
predicate SpecNext (v:Variables, 3
v’ :Variables) —

{

| | InsertOp()
| | QueryOp () I |
}
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Implementation

method Main()
{

var v:ImplVariables;
v := Implinit();

whllti (true) { . Host implementation is a single-
} v := EventHandler(v); threaded event-handler loop
}

02/07/2025 EECS498-003 39
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We could do direct refinement, but...

“'b-0-0-0-0
z%%

Implementatio

n@m@n%@m

OOOOOOOOOOOOOOOOOOOOO
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Avoiding integer
overflow
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Dealing with hosts

kacting concurrently

\.

(

.

Ensuring progress

EECS498-003
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Separation of concerns

02/07/2025

Complexities of

implementation

( )
Using efficient data
structures

. J

4 )

\_

Memory management

J

(

.

Avoiding integer
overflow

\

COMPUTER SCIENCE & ENGINEERING

Subtleties of

distributed protocols

4 )
Maintaining global
invariants

\_ J

4 )
Dealing with hosts

kac’tlng concurrently )

4 )
Ensuring progress

\_ J

-003
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Two-level refinement

02/07/2025 EECS498-003 43



COMPUTER SCIENCE & ENGINEERING
Protocol Layer

seg<int>

array<uinto4>

predicate ProtocolNext (v:HostState, v’ :HostState)

method EventHandler (v:HostState) returns (v’ :HostState)

type Message = MessageRequest () | MessageReply () |
type Packet = array<byte>

Q@
& *é Refines d(#

Protocol steps Implementation
(predicates) (methods)

02/07/2025 EECS498-003 44




COMPUTER SCIENCE & ENGINEERING
From Implementation to Protocol

PrOtOCO| 5 datatype Variables = Variables(x:int, y:int)
predicate Init(v:Variables)
‘:EE%;’ ‘?iiéb ‘ V.X == 0;
\ V.y == 5;

= }

function Abstraction(impl:ImplVariables) : Variables

{
. Variables(int(impl.x), int(impl.y))
Refines }

datatype ImplVariables = ImplVariables(x:uint64, y:uint64)

method InitImpl(v:ImplVariables)
ensures Init(Abstraction(v))

0;
5.

V.X
V.y :

Implementation
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COMPUTER SCIENCE & ENGINEERING
From Implementation to Protocol

PrOtOCOI = datatype Variables = Variables(x:int, y:int)
predicate MoveNorth(v:Variables, v':Variables)
‘:EE%;’ ‘?iiéb ‘ V'.X == V.X;
X vi.y == Vv.y + 1;

= }

function Abstraction(impl:ImplVariables) : Variables

{
}

Variables(int(impl.x), int(impl.y))

datatype ImplVariables = ImplVariables(x:uint64, y:uint64)

method MoveNorthImpl(v:ImplVariables) returns
(v':ImplVariables)
ensures MoveNorth(Abstraction(v), Abstraction(v’))

¢ |
Implementation

02/07/2025 EECS498-003 46
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From Implementation to Protocol

PrOtOCOI = datatype Variables = Variables(x:int, y:int)
predicate MoveNorth(v:Variables, v':Variables)
<EEEE> 1‘3&» : v'.X . X;
N vVi.y == V. ;

function Abstraction(impl:ImplVariables) : Variables
{
Variables(int(impl.x), int(impl.y))
Refi .
€nnes datatype ImplVariables = ImplVariables(x:uint64, y:uint64)

method MoveNorthImpl(v:ImplVariables) returns
(v':ImplVariables)
ensures MoveNorth(Abstraction(v), Abstraction(v’))
// or stutter

if(v.y < OXFFFF_FFFF_FFFF_FFFF) {
vVi.x 1= V.
V.

&# vi.y :
} else {

Implementation =

02/07/2025 } 47
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COMPUTER SCIENCE & ENGINEERING
The big picture

%’«ﬁ) s A

Spec Distributed System Model

G
Is Part Of .E !

Protocol steps Implementation
(predicates) (methods)
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