GOMPUTER SCIENCE & ENGINEERING

EECS498-003
Formal Verification of
Systems Software

Material and slides created by

Jon Howell and Manos Kapritsos

Formal Methods in the Field

Amazon

Cedar: A New
Language for
Expressive, Fast,
Safe, and

: ndalyzalgle ,

eday Ts used gt scale in
2”5@&”2%?@%1‘ O issions

and Amazon Ver'g:iecf ‘Access”

02/07/2025

Galois

OUR TECHNICAL AREAS

Softw:

are Correctness
Al/ML/DS

EECS498-003

COMPUTER SCIENCE & ENGINEERING

Imandra

Formal
Verification of
Financial

“M’rfftrs’?lkse g%}nﬁﬁs, Ttiviti

and OneChronos refy upon
Imandra’s algorithm governance
too(sbfor the c?esign, ’regu[au’on and
calibration cf many of their most

com}?[ex a@om’tﬁms. ”

COMPUTER SCIENCE & ENGINEERING

Revisiting the distributed system model

» Composite state machine Distributed system
* Hosts -
. Network Host Network
* Time | Time
1

In each step of this state machine:
* at most one Host takes a step, together with the Network
* or Time advances

0~ 0-0-0-0

02/07/2025 EECS498-003 3

'COMPUTER SCIENCE & ENGINEERING
A distributed execution in real life

RLIRELESSS | =S LER{L RESSESEH |

Reason about all possible
interleavings of the substeps?

E Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Enforce that all receives precede all sends

RLIRELESSS | =S LER{L RESSESEH |

Assume in proof that all host steps are atomic

I | I
W |

u Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

E Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

...there is a corresponding legal trace with atomic host steps

LERIL RESSESES | RELEILES LES LN L

RLIRELESSEH| S

E Receive !Local processing ! Send

02/07/2025 EECS498-003 8

S

'COMPUTER SCIENCE & ENGINEERING
The concept of “movers”

Actual execution

.

Indistinguishable -
execution

E Receive !Local processing ! Send

02/07/2025 EECS498-003 9

'COMPUTER SCIENCE & ENGINEERING
Local computations can move either way

Actual execution

Indistinguishable
execution [

y=1 I
E Receive !Local processing ! Send

02/07/2025 EECS498-003 10

COMPUTER SCIENCE & ENGINEERING
Receives are right movers

Actual execution _ _ ?
[[

Indistinguishable _ _ —
Eﬂj

xecution " (E
y=1 S
E Receive !Local processing ! Send

'COMPUTER SCIENCE & ENGINEERING
Receives are not left movers

Actual execution

IndistingUi
execution

E Receive !Local processing ! Send

02/07/2025 EECS498-003 12

'COMPUTER SCIENCE & ENGINEERING
Sends are left movers

- -
Actual execution
Eﬂ:]

ﬂ] []J [
E Receive !Local processing ! Send
EECS498-003

Indistinguishable
execution [

COMPUTER SCIENCE & ENGINEERING

Sends are not right movers

Actual execution
- |

IndistingUi
execution

E Receive !Local processing ! Send

02/07/2025 EECS498-003 14

COMPUTER SCIENCE & ENGINEERING
Summary of movers

* Local computation moves both ways
* Sends move to the left
* Receives move to the right

COMPUTER SCIENCE & ENGINEERING

Creating the atomic trace
l l

RLRY RS LS LIRILR|[|STST L

E Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING
Creating the atomic trace

R L LES

We can keep moving individual instructions to the left/right, until the
entire action is atomic (i.e. does not interleave with other actions)

E Receive !Local processing ! Send

02/07/2025 EECS498-003 17

COMPUTER SCIENCE & ENGINEERING
The atomic trace is legal

Local event ordering is preserved

Yo
AN

Packets are never received before they’re sent

E Receive !Local processing ! Send

02/07/2025 EECS498-003 18

COMPUTER SCIENCE & ENGINEERING

The atomic trace preserves failures

Real trace

RLIRELESSS | =S LER{L RESSESEH |

Reduced tracel

| .
m

u Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Reading the clock is a “non-mover”

You can only have one of these,
and it must be the “atomic point”

02/07/2025 EECS498-003 20

COMPUTER SCIENCE & ENGINEERING

Reduction quiz

Which of the following actions are amenable to reduction?

A. i

You can only have one clock read,

B. and it must be the “atomic point”
C.
b Receives before Clock,

Sends after Clock

02/07/2025 EECS498-003 21

Reduction-enabling obligation

* Each action should be of the form:
e R* C?S*
* j.e., Receives then Clock then Sends
* with local actions interspersed between them

02/07/2025 EECS498-003

COMPUTER SCIENCE & ENGINEERING

22

'COMPUTER SCIENCE & ENGINEERING
Administrivia

* PS4 (Chapter 6 - Refinement) is due next week

Final exam

on Dec 18
Project 1 Project 2 |
10/31 11/7 11/14 11/21 11/28 12/5 12/12 12/19

LJ

YOU ARE HERE

02/07/2025 EECS498-003 23

'COMPUTER SCIENCE & ENGINEERING
Synchronous specs

module MapSpec {
datatype Variables = Variables(mapp:map<Key, Value>)

predicate InsertOp(v:Variables, v':Variables, key:Key,
value:Value) {

, .

predicate QueryOp(v:Variables, v':Variables, key:Key,
output:Value) {

1
J

}

Insert Insert Insert

U | O o >

Query Query

Synchronous specs

COMPUTER SCIENCE & ENGINEERING

Client 1
o ® >
Client 2
—9 e >
Insert Insert Insert
Server A= v,
v 6 d >

Query Query

02/07/2025 EECS498-003

25

COMPUTER SCIENCE & ENGINEERING

Asynchrony in real life

Client 1 SendRequest ReceiveReply

? @ »
Client 2 [Send;equest Re7veReply |
Server X

02/07/2025 EECS498-003 26

COMPUTER SCIENCE & ENGINEERING

Linearizability

SendRequest ReceiveReply

— »
[@ SendRequest ReceiveReply
‘_? »
Insert(x,7)
Query(x)
Server N

02/07/2025 EECS498-003 27

COMPUTER SCIENCE & ENGINEERING

Linearizability
SendRequest ReceiveReply
@ >
SendRequest/ ReceiveReply)
| /
Insert(x,7) l
Query(x)
Server N

02/07/2025 EECS498-003 28

COMPUTER SCIENCE & ENGINEERING

The limitation of Synchronous specs

Client 1

.A - »
Client 2
ien H .)
Server Ins';rt Insert Insert
] O O >
Query Query

02/07/2025 EECS498-003 29

COMPUTER SCIENCE & ENGINEERING

The answer: more events!

Instead of:
Server Insert
% »
Use this:
Server AcceptRequest ProcessRequest DeliverReply

@ @ >

N

This is a NoOp event!

02/07/2025 EECS498-003 30

COMPUTER SCIENCE & ENGINEERING

Example run

SendRequest ReceiveReply
@ @ >

A

SendRequest ReceiveReply
O @ >

A

Insert(x,7)| Query(x)

Server ‘ \J_/‘\/ ® >

AcceptRequest DeliverReply AcceptRequest DeliverReply

02/07/2025 EECS49£003 31

COMPUTER SCIENCE & ENGINEERING

Example run #2

SendRequest ReceiveReply

@ >

*

SendRequest ReceiveReply
- @ >
A
Insert(x,7) Query(x)

Server ‘ ‘ ‘ ® >

AcceptRequest AcceptRequest DeliverReply DeliverReply

02/07/2025 EECS498-003 32

COMPUTER SCIENCE & ENGINEERING

Example run #2

SendRequest ReceiveReply

@ >

*

SendRequest ReceiveReply
- @ >
A
Insert(x,7) Query(x)

Server ‘ ‘ ‘ ® >

AcceptRequest AcceptRequest DeliverReply DeliverReply

02/07/2025 EECS498-003 33

'COMPUTER SCIENCE & ENGINEERING
Administrivia

* No class this Monday, 04/08

* No lab this Friday, extra OH instead
* Keshav will make an announcement with the exact time on Piazza

* Final exam logistics
* Time: May 2, 8-10am
* Location: This classroom, COOL G906
* If you have special accommodations, | will email you about the time/place

COMPUTER SCIENCE & ENGINEERING
Dafny: finite set heuristics

predicate IsEven(x:int) {

X/2*2==X
}
predicate IsModest(x:int) {
0 <= x < 10
}
lemma IsThisSetFinite() {
var modestEvens := set x | IsModest(x) &&
IsEven(x);

assert modestEvens == {0,2,4,6,8};

}

Error: the result of a set comprehension must be finite, but Dafny's
heuristics can't figure out how to produce a bounded set of values for 'x'

GOMPUTER SCIENCE & ENGINEERING

Dafny: finite set heuristics

predicate IsEven(x:int) {
X/2*2==X
}

predicate IsModest(x:int) {
0 <= x < 10

}

function ModestNumbers() : set<int> {
set x | 0 <= x < 10

}
lemma IsThisSetFinite() {

var modestEvens := set x | x in ModestNumbers() &&
IsEven(x);

assert modestEvens == {0,2,4,6,8};
}

COMPUTER SCIENCE & ENGINEERING

Refinement (down to an implementation)

Imple:mentatlon :

15 n@n%%%
o

OOOOOOOOOOOOOOOOOOOOO

'COMPUTER SCIENCE & ENGINEERING
Example: Map spec

datatype Variables = Variables (mapp:map<Key, Value>)

predicate SpecInit(v:Variables)

{

v == map/[]
}
predicate SpecNext (v:Variables, 3
v’ :Variables) —

{

| | InsertOp()
| | QueryOp () I |
}

02/07/2025 EECS498-003 38

COMPUTER SCIENCE & ENGINEERING

Implementation

method Main()
{

var v:ImplVariables;
v := Implinit();

whllti (true) { . Host implementation is a single-
} v := EventHandler(v); threaded event-handler loop
}

02/07/2025 EECS498-003 39

COMPUTER SCIENCE & ENGINEERING

We could do direct refinement, but...

“'b-0-0-0-0
z%%

Implementatio

n@m@n%@m

OOOOOOOOOOOOOOOOOOOOO

02/07/2025

Complexit
implemer

Memory management
g

p
Avoiding integer
overflow

.

COMPUTER SCIENCE & ENGINEERING

Dealing with hosts

kacting concurrently

\.

(

.

Ensuring progress

EECS498-003

41

Separation of concerns

02/07/2025

Complexities of

implementation

()
Using efficient data
structures

. J

4)

_

Memory management

J

(

.

Avoiding integer
overflow

\

COMPUTER SCIENCE & ENGINEERING

Subtleties of

distributed protocols

4)
Maintaining global
invariants

_ J

4)
Dealing with hosts

kac’tlng concurrently)

4)
Ensuring progress

_ J

-003

42

V| COMPUTER SCIENCE & ENGINEERING
Two-level refinement

02/07/2025 EECS498-003 43

COMPUTER SCIENCE & ENGINEERING
Protocol Layer

seg<int>

array<uinto4>

predicate ProtocolNext (v:HostState, v’ :HostState)

method EventHandler (v:HostState) returns (v’ :HostState)

type Message = MessageRequest () | MessageReply () |
type Packet = array<byte>

Q@
& *é Refines d(#

Protocol steps Implementation
(predicates) (methods)

02/07/2025 EECS498-003 44

COMPUTER SCIENCE & ENGINEERING
From Implementation to Protocol

PrOtOCO| 5 datatype Variables = Variables(x:int, y:int)
predicate Init(v:Variables)
‘:EE%;’ ‘?iiéb ‘ V.X == 0;
\ V.y == 5;

= }

function Abstraction(impl:ImplVariables) : Variables

{
. Variables(int(impl.x), int(impl.y))
Refines }

datatype ImplVariables = ImplVariables(x:uint64, y:uint64)

method InitImpl(v:ImplVariables)
ensures Init(Abstraction(v))

0;
5.

V.X
V.y :

Implementation

02/07/2025 EECS498-003 45

COMPUTER SCIENCE & ENGINEERING
From Implementation to Protocol

PrOtOCOI = datatype Variables = Variables(x:int, y:int)
predicate MoveNorth(v:Variables, v':Variables)
‘:EE%;’ ‘?iiéb ‘ V'.X == V.X;
X vi.y == Vv.y + 1;

= }

function Abstraction(impl:ImplVariables) : Variables

{
}

Variables(int(impl.x), int(impl.y))

datatype ImplVariables = ImplVariables(x:uint64, y:uint64)

method MoveNorthImpl(v:ImplVariables) returns
(v':ImplVariables)
ensures MoveNorth(Abstraction(v), Abstraction(v’))

¢ |
Implementation

02/07/2025 EECS498-003 46

VI
VI

X
VA

COMPUTER SCIENCE & ENGINEERING

From Implementation to Protocol

PrOtOCOI = datatype Variables = Variables(x:int, y:int)
predicate MoveNorth(v:Variables, v':Variables)
<EEEE> 1‘3&» : v'.X . X;
N vVi.y == V. ;

function Abstraction(impl:ImplVariables) : Variables
{
Variables(int(impl.x), int(impl.y))
Refi .
€nnes datatype ImplVariables = ImplVariables(x:uint64, y:uint64)

method MoveNorthImpl(v:ImplVariables) returns
(v':ImplVariables)
ensures MoveNorth(Abstraction(v), Abstraction(v’))
// or stutter

if(v.y < OXFFFF_FFFF_FFFF_FFFF) {
vVi.x 1= V.
V.

&# vi.y :
} else {

Implementation =

02/07/2025 } 47

X
y +1;

COMPUTER SCIENCE & ENGINEERING
The big picture

%’«ﬁ) s A

Spec Distributed System Model

G
Is Part Of .E !

Protocol steps Implementation
(predicates) (methods)

02/07/2025 EECS498-003 48

————

	EECS498-003 Formal Verification of Systems Software
	Formal Methods in the Field
	Revisiting the distributed system model
	Are the steps really atomic?
	A distributed execution in real life
	Concurrency containment
	Concurrency containment (2)
	Concurrency containment (3)
	The concept of “movers”
	Local computations can move either way
	Receives are right movers
	Receives are not left movers
	Sends are left movers
	Sends are not right movers
	Summary of movers
	Creating the atomic trace
	Creating the atomic trace (2)
	The atomic trace is legal
	The atomic trace preserves failures
	Reading the clock is a “non-mover”
	Reduction quiz
	Reduction-enabling obligation
	Administrivia
	Synchronous specs
	Synchronous specs (2)
	Asynchrony in real life
	Linearizability
	Linearizability (2)
	The limitation of Synchronous specs
	The answer: more events!
	Example run
	Example run #2
	Example run #2 (2)
	Administrivia (2)
	Dafny: finite set heuristics
	Dafny: finite set heuristics (2)
	Refinement (down to an implementation)
	Example: Map spec
	Implementation
	We could do direct refinement, but…
	Slide 41
	Separation of concerns
	Two-level refinement
	Protocol Layer
	From Implementation to Protocol
	From Implementation to Protocol (2)
	From Implementation to Protocol (3)
	The big picture

