
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

02/07/2025 EECS498-003 2

Statically checking for correctness

What we want is a “static correctness check”, akin to a static type check

You write your code normally, but if you introduce bugs the checker will
tell you

When the checker complains, you have to spend some time to convince
it that your code is right---if indeed it is

02/07/2025 EECS498-003 3

Using a Theorem Prover

Express the execution of the system and its correctness as a mathematical
formula (done automatically by the language)

Give the formula to a theorem prover, effectively asking:
”If the system behaves this way, is it possible for its correctness to be
violated?”

A negative answer means the system is proven to be correct
A positive answer means there is still work to do, either:
• the system is indeed incorrect
• the proof is incomplete

02/07/2025 EECS498-003 4

 Using Dafny

• We will be using Dafny as our verification language
• Dafny is an imperative language designed with formal verification in mind
• ...and plenty of functional language features

• Dafny uses an SMT solver (Z3) to automate verification to a large degree
• ...but it needs our help sometimes

• Most of the high-level skills are transferrable...
• ...but some are specific to Dafny and/or automation

02/07/2025 EECS498-003 5

 Getting started with Dafny

• In the lab on Friday, Keshav will go over instructions for installing Dafny 4.4

• The simplest way to use Dafny is via the Visual Studio plugin
• Gives you a nice interface

• You can also invoke Dafny on the command line:
• dafny myFile.dfy

02/07/2025 EECS498-003 6

Dafny in Docker

• We provide you with a Docker container that has Dafny pre-installed
• Makes it easy to get started
• Ensures everyone is using the same Dafny version as the autograder
• Not highly recommended for the bulk of your development

• Download and run it like this:
• docker pull ekaprits/eecs498-009:latest
• docker container run --mount
src=$PWD,target=/home/autograder/working_dir,type=bind,readonly -t -i
ekaprits/eecs498-009:latest

• CAEN machines have some partial support for Docker
• If you don’t have access to a machine that can run Docker, contact me ASAP

02/07/2025 EECS498-003 7

Administrivia

• Please remember to upload your picture, if you haven’t
• https://verification.eecs.umich.edu/self.php

• Lab is tomorrow, Friday 9:30-11:30 in GGBL 2147

• See Piazza post for a research opportunity on a project with Max New
and Xinyu Wang

https://verification.eecs.umich.edu/self.php

02/07/2025 EECS498-003

Learning Dafny

We will be using Dafny as our verification language

Dafny is a programming language built with verification in mind

• It supports both imperative and declarative programming styles

8

EECS498-008

Imperative vs declarative

9

Imperative style
Here’s what I want you to do

upper_bound = 0;
for item in list:
 if item > upper_bound:
 upper_bound = item;
return upper_bound

Declarative style
Here’s what I want you to return

return upper_bound such that:
 forall item in list
 item <= upper_bound

1/22/24

Python (imperative)
small_nums = []
for i in range(20):
 if i < 5:
 small_nums.append(i)

Python (declarative)
small_nums = [x for x in range(20) if x <
5]

02/07/2025 EECS498-003

Dafny

The Dafny pipeline

10

Dafny
program

type
check

verification
condition

generation

code
generation C# program

Java
program

Go program

C++
program

Z3
solver

02/07/2025 EECS498-003

We will use the declarative parts of Dafny

Ignore the imperative parts (mostly)

• mutable objects
• heap “framing”: reads, modifies, fresh
• !new, ==

The declarative/mathematical/functional subset is most useful in
writing high-level protocols and specifications

11

02/07/2025 EECS498-003 13

Running Dafny

• In Visual Studio: verification “onChange” or “onSave”

• On the command line:
• dafny /compile:0 /errorTrace:0 someDafnyFile.dfy

02/07/2025 EECS498-003

Data constructs

14

Basic primitives int
bool

Immutable compounds set<T>
seq<T>
map<A, B>
datatype

Mutable objects class

This is a mathematical integer,
not a machine integer

02/07/2025 EECS498-003

Procedure-like constructs

Important difference: lemmas are opaque, while functions are not!

15

expression context statement context

ghost (not compiled) ghost function
ghost predicate

lemma

executable function method

As in math, not C:
● f(x, y) == f(x, y)
● definition substitution

A function
returning bool

02/07/2025 EECS498-003

Function syntax

function eval_linear(m: int, b: int, x: int) : int

{

 m * x + b

}

16

explicitly typed parameters
function

result type

definition body is an expression whose type matches result declaration

● predicate means “function returning bool”.

02/07/2025 EECS498-003

Lemma syntax

lemma MyFirstLemma(x: int)
{
 assert x >= 0;
 assert x >= -1;
}

17

assert() is a static check!

Dafny will attempt to prove the
assertion. Regardless of the
result, subsequent code will
assume that x >= 0

definition body is an
imperative-style

statement context

Remember that lemmas are opaque!

02/07/2025 EECS498-003

Pre- and postconditions

lemma IntegerOrdering(a: int, b: int)
 requires b == a + 3
 ensures a < b
{
 assert a < b;
}

18

Precondition: statically checked
anywhere this lemma is called

Postcondition: an exported assertion

02/07/2025 EECS498-003

Pre- and postconditions

lemma IntegerOrdering(a: int, b: int)
 b == a + 3
 ==> a < b
{
 assert a < b;
}

19

02/07/2025 EECS498-003

Messing with preconditions

lemma IntegerOrdering(a: int, b: int)
 requires b == a + 3
 requires a > b + 1
 ensures a < b
{
 // proof goes here
}

20

02/07/2025 EECS498-003 21

Predicates
The space of all possible states

A predicate (or any Boolean
expression) is a set of states

x > 1

02/07/2025 EECS498-003 22

Predicates

 x <= 1

The space of all possible states

A predicate (or any Boolean
expression) is a set of states

02/07/2025 EECS498-003 23

Predicates
The space of all possible states

What predicate (Boolean
expression) is this?

02/07/2025 EECS498-003 24

Predicates
The space of all possible states

What predicate (Boolean
expression) is this?

02/07/2025 EECS498-003 25

Implications
The space of all possible states

What does an implication
look like in this graph?

x > 0
x > 10

Logical statement:
x > 10 ==> x > 0

Visual equivalent:
If you belong in the “inner”
predicate, you must also
belong in the “outer” one

02/07/2025 EECS498-003 26

Reasoning about false
The space of all possible states

Does this hold?
false ==> P(x)

P(x)

Does this hold?
P(x) ==> false

02/07/2025 EECS498-003 27

Reasoning about true
The space of all possible states

Does this hold?
true ==> P(x)

P(x)

Does this hold?
P(x) ==> true

02/07/2025 EECS498-003

Messing with preconditions

lemma IntegerOrdering(a: int, b: int)
 requires b == a + 3
 requires a > b + 1
 ensures a < b
{
 // proof goes here
}

28

02/07/2025 EECS498-003

Messing with postconditions

Is the following lemma ever useful?

lemma SomeLemma(x: int, y: int)
 requires P(x, y)
 ensures false
{
 // proof goes here
}

29

02/07/2025 EECS498-003

Opacity

lemma zero_slope(m: int, b: int, x1: int, x2:int)

{

 if (m == 0) {

 assert eval_linear(m, b, x1) == eval_linear(m, b, x2);

 }

}

• This lemma verifies because it can see inside the definition of function
eval_linear()
• ...but lemma bodies are opaque! The result of this verification can’t be

used anywhere else.
30

ghost function eval_linear(m: int, b: int, x: int) :
int
{
 m * x + b
}

02/07/2025 EECS498-003

Opacity

lemma zero_slope(m: int, b: int, x1: int, x2:int)
 requires m == 0
 ensures eval_linear(m, b, x1) == eval_linear(m, b,
x2)
{
}

lemma zero_slope(m: int, b: int, x1: int, x2:int)
 ensures m == 0 ==>
 eval_linear(m, b, x1) == eval_linear(m, b, x2)
{
}

31

02/07/2025 EECS498-003

● Shorter operators have higher precedence
P(x) && Q(x) ==> R(S)

● Bulleted conjunctions / disjunctions
 && P(x)
 && Q(y)
 && R(x) ==> S(y)
 && T(x, y)

● Parentheses are a good idea around
forall, exists, ==>

Boolean operators
!
&&
||
==
==>
<==>
forall
exists

32

 ()
 ()
 ()
 ()

(

) (
)

02/07/2025 EECS498-003

Quantifier syntax: forall
forall a :: P(a)

forall a | Q(a) :: R(a)

forall a | Q(a)
ensures R(a)

{
}

expression forms

statement form

33

The type of a is typically inferred

VSCode transition

02/07/2025 EECS498-003

Quantifier syntax: exists
forall’s evil twin

exists a :: P(a)

E.g. exists n:nat :: 2*n == 4

Dafny cannot prove exists without a witness

34

VSCode transition

02/07/2025 EECS498-003

if-then-else expressions

if a < b then P(a) else P(b)

 <==>

(a < b && P(a)) || (!(a < b) && P(b))

36

If-then-else expressions work with other types:

if a < b then a + 1 else b - 3

02/07/2025 EECS498-003

Sets
a: set<int>, b: set<int>
{1, 3, 5} {}
7 in a
a <= b
a + b
a - b
a * b
a == b
|a|
set x: nat |
 x < 100 && x % 2 == 0

set is a templated type
set literals
element membership
subset
union
difference
intersection
equality (works with all mathematical objects)
set cardinality
set comprehension

37

02/07/2025 EECS498-003

Sequences
a: seq<int>, b: seq<int>
[1, 3, 5] []
7 in a
a + b
a == b
|a|
a[2..5] a[3..]
seq(5, i => i * 2)
seq(5, i requires 0<=i
 => sqrt(i))

seq is a templated type
sequence literal
element membership
concatenation
equality (works with all mathematical objects)
sequence length
sequence slice
sequence comprehension

38

02/07/2025 EECS498-003

Maps
a: map<int, set<int>>
map[2:={2}, 6:={2,3}]
7 in a
7 in a.Keys
a == b
a[5 := {5}]
map k | k in Evens()
 :: k/2

map is a templated type
map literal
key membership
alternative form of key membership
equality (works with all mathematical objects)
map update (not a mutation)
map comprehension

39

02/07/2025 EECS498-003

lemma foo()
{
 var set1 := { 1, 3, 5, 3 };
 var seq1 := [1, 3, 5, 3];

 assert forall i | i in set1 :: i in seq1;
 assert forall i | i in seq1 :: i in set1;
 assert |set1| < |seq1|;
}

var is mathematical let.
It introduces an equivalent
shorthand for another
expression.

40

02/07/2025 EECS498-003

datatype Order = Pizza(toppings:set<Topping>)
 | Shake(flavor:Fruit, whip: bool)

Algebraic datatypes (“struct” and “union”)
datatype HAlign = Left | Center | Right

datatype VAlign = Top | Middle | Bottom

datatype TextAlign = TextAlign(hAlign:HAlign, vAlign:VAlign)

new name
we’re defining

disjoint
constructors

multiplicative
constructor

41

02/07/2025 EECS498-003

Hoare logic composition

42

lemma DoggiesAreQuadrupeds(pet: Pet)
 requires IsDog(pet)
 ensures |Legs(pet)| == 4 { … }

lemma StaticStability(pet: Pet)
 requires |Legs(pet)| >= 3
 ensures IsStaticallyStable(pet) { … }

lemma DoggiesAreStaticallyStable(pet: Pet)
 requires IsDog(pet)
 ensures IsStaticallyStable(pet)
{
 DoggiesAreQuadrupeds(pet);
 StaticStability(pet);
}

02/07/2025 EECS498-003

Lemmas can return results

lemma EulerianWalk(g: Graph) returns (p: Path)
 requires |NodesWithOddDegree(g)| <= 2
 ensures EulerWalk(g, p)

43

02/07/2025 EECS498-003

Detour to Imperativeland
predicate IsMaxIndex(a:seq<int>, x:int) {
 && 0 <= x < |a|
 && (forall i :: 0 <= i < |a| ==> a[i] <= a[x])
}

44

02/07/2025 EECS498-003

Imperativeland
method findMaxIndex(a:seq<int>) returns (x:int)
 requires |a| > 0
 ensures IsMaxIndex(a, x)
{
 var i := 1;
 var ret := 0;
 while(i < |a|)
 invariant 0 <= i <= |a|
 invariant IsMaxIndex(a[..i], ret)
 {
 if(a[i] > a[ret]) {
 ret := i;
 }
 i := i + 1;
 }
 return ret;
}

45

predicate IsMaxIndex(a:seq<int>, x:int) {
 && 0 <= x < |a|
 && (forall i :: 0 <= i < |a| ==> a[i] <=
a[x])
}

	EECS498-003 Formal Verification of Systems Software
	Statically checking for correctness
	Using a Theorem Prover
	Using Dafny
	Getting started with Dafny
	Dafny in Docker
	Administrivia
	Learning Dafny
	Imperative vs declarative
	The Dafny pipeline
	We will use the declarative parts of Dafny
	Running Dafny
	Data constructs
	Procedure-like constructs
	Function syntax
	Lemma syntax
	Pre- and postconditions
	Pre- and postconditions (2)
	Messing with preconditions
	Predicates
	Predicates (2)
	Predicates (3)
	Predicates (4)
	Implications
	Reasoning about false
	Reasoning about true
	Messing with preconditions (2)
	Messing with postconditions
	Opacity
	Opacity (2)
	Boolean operators
	Quantifier syntax: forall
	Quantifier syntax: exists
	if-then-else expressions
	Sets
	Sequences
	Maps
	Slide 40
	Algebraic datatypes (“struct” and “union”)
	Hoare logic composition
	Lemmas can return results
	Detour to Imperativeland
	Imperativeland

