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COMPUTER SCIENCE & ENGINEERING
Refinement recap

Spec

ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

ﬁ lemma RefinementInit(v:Variables)
requires Init(v)
ensures Inv(v) // Inv base case
. . ensures Spec.Init(Abstraction(v // Refinement base case
Distributed system : ‘ v))

lemma RefinementNext(v:Variables, v':Variables)
requires Next(v, v’, evt)
requires Inv(v)
Host Network ensures Inv(v') // Inv inductive step
ensures Spec.Next(Abstraction(v), Abstraction(v’), evt)
| | Abstraction(v) == Abstraction(v’) && evt == NoOp
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The verification game

* Player 1: the benign verification expert Q
* Player 2: the malicious engineer 0

Player 1 sets up the trusted environment
(i.e. all .t.dfy files)

Player 2 writes the implementation and proof

(i.e. all .v.dfy files)

9 Player 1 runs the build system
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code you need to inspect code the verifier checks for you
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Q: Can the abstraction function Abstraction() be untrusted?

DISTriputed system :
Network i Host
*.t.dfy : *v.dfy
(Trusted) (Verified)
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What if the abstraction function pretended

nothing ever happened?

function Abstraction(v:Variables) :
Spec.Variables {

var a0 :| SpeclInit(a0);

a0

[ Always returns the 1

initial state / }

predicate Inv(v:Variables) { true }
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...Or just made up a fake story?

datatype Variables =

Variables(actualState: Stuff, fakeState:
HostState)

function Abstraction(v:Variables) :

[ Returns fake state \J:%pec .Variables {
v.fakeState
s




'COMPUTER SCIENCE & ENGINEERING
Events to the rescue

ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
requires Init(v)
ensures Inv(v) // Inv base case
ensures Spec.Init(Abstraction(v)) // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
requires Next(v, v’', evt)
requires Inv(v)
ensures Inv(v') // Inv inductive step
ensures Spec.Next(Abstraction(v), Abstraction(v’), evt) // Refinement
inductive step
| | Abstraction(v) == Abstraction(v’) && evt == NoOp // OR stutter step
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Application correspondence

Spec

o0-8-a-0-0
o oo oo

Implementation/protocol

000000000000000000000
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The Abstraction function is untrusted

Spec
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The Abstraction function must be untrusted

* If it were trusted, we would have to inspect it

* To fully understand it, we would also have to inspect the entire low-
level state

* The entire edifice of verification would collapse!



Administrivia
* Project 1 due today

* PS4 released tomorrow

* No class next Tuesday 11/12
* Manos out of town
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Revisiting the distributed system model

 Composite state machine Distributed system
* Hosts gu
. Network Host Network
" Time | Time
l
In each step of this state machine:

* at most one Host takes a step, together with the Network
* or Time advances

0~ 0-0-0-0
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A distributed execution in real life

RLIRELESSS | =S LER{L RESSESEH |

Reason about all possible
interleavings of the substeps?

E Receive !Local processing ! Send
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Concurrency containment

Enforce that all receives precede all sends

RLIRELESSS | =S LER{L RESSESEH |

Assume in proof that all host steps are atomic

I | I
W |

u Receive !Local processing ! Send




COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

E Receive !Local processing ! Send
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Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

...there is a corresponding legal trace with atomic host steps

LERIL RESSESES | RELEILES LES LN L

RLIRELESSEH| S

E Receive !Local processing ! Send
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The concept of “movers”

Actual execution

.

Indistinguishable -
execution

E Receive !Local processing ! Send
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Local computations can move either way

Actual execution

Indistinguishable
execution [

y=1 I
E Receive !Local processing ! Send
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Receives are right movers

Actual execution _ _ ?
[ [

Indistinguishable _ _ —
Eﬂj

xecution " (E
y=1 S
E Receive !Local processing ! Send
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Receives are not left movers

Actual execution

IndistingUi
execution

E Receive !Local processing ! Send
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Sends are left movers

- -
Actual execution
Eﬂ:]

ﬂ] [ ]J [
E Receive !Local processing ! Send
EECS498-003

Indistinguishable
execution [
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Sends are not right movers

Actual execution
- |

IndistingUi
execution

E Receive !Local processing ! Send
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Summary of movers

* Local computation moves both ways
* Sends move to the left
* Receives move to the right
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Creating the atomic trace
l l

RLRY RS LS LIRILR|[|STST L

E Receive !Local processing ! Send
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Creating the atomic trace

R L LES

We can keep moving individual instructions to the left/right, until the
entire action is atomic (i.e. does not interleave with other actions)

E Receive !Local processing ! Send
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The atomic trace is legal

Local event ordering is preserved

Yo
AN

Packets are never received before they’re sent

E Receive !Local processing ! Send
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The atomic trace preserves failures

Real trace

RLIRELESSS | =S LER{L RESSESEH |

Reduced tracel

| .
m

u Receive !Local processing ! Send
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Reading the clock is a “non-mover”

You can only have one of these,
and it must be the “atomic point”
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