GOMPUTER SCIENCE & ENGINEERING

EECS498-003
Formal Verification of
Systems Software

Material and slides created by

Jon Howell and Manos Kapritsos

COMPUTER SCIENCE & ENGINEERING
Refinement recap

Spec

ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

ﬁ lemma RefinementInit(v:Variables)
requires Init(v)
ensures Inv(v) // Inv base case
. . ensures Spec.Init(Abstraction(v // Refinement base case
Distributed system : ‘ v))

lemma RefinementNext(v:Variables, v':Variables)
requires Next(v, v’, evt)
requires Inv(v)
Host Network ensures Inv(v') // Inv inductive step
ensures Spec.Next(Abstraction(v), Abstraction(v’), evt)
| | Abstraction(v) == Abstraction(v’) && evt == NoOp

02/07/2025

COMPUTER SCIENCE & ENGINEERING

code you need to inspect code the verifier checks for you
A A

(

Spec

i

Distributed system

Host |

Network

AV 4

EECS498-003

\

COMPUTER SCIENCE & ENGINEERING

code you need to inspect code the verifier checks for you

A A
(A\Y 4 \

i

......

O
wn
ﬁ
.
o
-
ﬁ
D B
wn
<
wn
ﬁ
)
3

Network Host
*.t.dfy *v.dfy
(Trusted) (Verified)

02/07/2025 EECS498-003 4

COMPUTER SCIENCE & ENGINEERING

The verification game

* Player 1: the benign verification expert Q
* Player 2: the malicious engineer 0

Player 1 sets up the trusted environment
(i.e. all .t.dfy files)

Player 2 writes the implementation and proof

(i.e. all .v.dfy files)

9 Player 1 runs the build system

02/07/2025 EECS498-003 5

COMPUTER SCIENCE & ENGINEERING

code you need to inspect code the verifier checks for you

A A
(A\Y 4 \

P LTt }

{}

Q: Can the abstraction function Abstraction() be untrusted?

DISTriputed system :
Network i Host
*.t.dfy : *v.dfy
(Trusted) (Verified)

02/07/2025 EECS498-003 6

COMPUTER SCIENCE & ENGINEERING
What if the abstraction function pretended

nothing ever happened?

function Abstraction(v:Variables) :
Spec.Variables {

var a0 :| SpeclInit(a0);

a0

[Always returns the 1

initial state / }

predicate Inv(v:Variables) { true }

COMPUTER SCIENCE & ENGINEERING
...Or just made up a fake story?

datatype Variables =

Variables(actualState: Stuff, fakeState:
HostState)

function Abstraction(v:Variables) :

[Returns fake state \J:%pec .Variables {
v.fakeState
s

'COMPUTER SCIENCE & ENGINEERING
Events to the rescue

ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
requires Init(v)
ensures Inv(v) // Inv base case
ensures Spec.Init(Abstraction(v)) // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
requires Next(v, v’', evt)
requires Inv(v)
ensures Inv(v') // Inv inductive step
ensures Spec.Next(Abstraction(v), Abstraction(v’), evt) // Refinement
inductive step
| | Abstraction(v) == Abstraction(v’) && evt == NoOp // OR stutter step

COMPUTER SCIENCE & ENGINEERING

Application correspondence

Spec

o0-8-a-0-0
o oo oo

Implementation/protocol

000000000000000000000

COMPUTER SCIENCE & ENGINEERING

The Abstraction function is untrusted

Spec

sae gt

Network

*t.dfy
(Trusted)

i

Host

*v.dfy
(Untrusted)

'COMPUTER SCIENCE & ENGINEERING
The Abstraction function must be untrusted

* If it were trusted, we would have to inspect it

* To fully understand it, we would also have to inspect the entire low-
level state

* The entire edifice of verification would collapse!

Administrivia
* Project 1 due today

* PS4 released tomorrow

* No class next Tuesday 11/12
* Manos out of town

GOMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERING
Revisiting the distributed system model

 Composite state machine Distributed system
* Hosts gu
. Network Host Network
" Time | Time
l
In each step of this state machine:

* at most one Host takes a step, together with the Network
* or Time advances

0~ 0-0-0-0

02/07/2025 EECS498-003 14

'COMPUTER SCIENCE & ENGINEERING
A distributed execution in real life

RLIRELESSS | =S LER{L RESSESEH |

Reason about all possible
interleavings of the substeps?

E Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Enforce that all receives precede all sends

RLIRELESSS | =S LER{L RESSESEH |

Assume in proof that all host steps are atomic

I | I
W |

u Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

E Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Concurrency containment

Reduction argument: for every real trace...

RLIRELESSS | =S LER{L RESSESEH |

...there is a corresponding legal trace with atomic host steps

LERIL RESSESES | RELEILES LES LN L

RLIRELESSEH| S

E Receive !Local processing ! Send

02/07/2025 EECS498-003 19

S

'COMPUTER SCIENCE & ENGINEERING
The concept of “movers”

Actual execution

.

Indistinguishable -
execution

E Receive !Local processing ! Send

02/07/2025 EECS498-003 20

'COMPUTER SCIENCE & ENGINEERING
Local computations can move either way

Actual execution

Indistinguishable
execution [

y=1 I
E Receive !Local processing ! Send

02/07/2025 EECS498-003 21

COMPUTER SCIENCE & ENGINEERING
Receives are right movers

Actual execution _ _ ?
[[

Indistinguishable _ _ —
Eﬂj

xecution " (E
y=1 S
E Receive !Local processing ! Send

'COMPUTER SCIENCE & ENGINEERING
Receives are not left movers

Actual execution

IndistingUi
execution

E Receive !Local processing ! Send

02/07/2025 EECS498-003 23

'COMPUTER SCIENCE & ENGINEERING
Sends are left movers

- -
Actual execution
Eﬂ:]

ﬂ] []J [
E Receive !Local processing ! Send
EECS498-003

Indistinguishable
execution [

COMPUTER SCIENCE & ENGINEERING

Sends are not right movers

Actual execution
- |

IndistingUi
execution

E Receive !Local processing ! Send

02/07/2025 EECS498-003 25

COMPUTER SCIENCE & ENGINEERING
Summary of movers

* Local computation moves both ways
* Sends move to the left
* Receives move to the right

COMPUTER SCIENCE & ENGINEERING

Creating the atomic trace
l l

RLRY RS LS LIRILR|[|STST L

E Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING
Creating the atomic trace

R L LES

We can keep moving individual instructions to the left/right, until the
entire action is atomic (i.e. does not interleave with other actions)

E Receive !Local processing ! Send

02/07/2025 EECS498-003 28

COMPUTER SCIENCE & ENGINEERING
The atomic trace is legal

Local event ordering is preserved

Yo
AN

Packets are never received before they’re sent

E Receive !Local processing ! Send

02/07/2025 EECS498-003 29

COMPUTER SCIENCE & ENGINEERING

The atomic trace preserves failures

Real trace

RLIRELESSS | =S LER{L RESSESEH |

Reduced tracel

| .
m

u Receive !Local processing ! Send

COMPUTER SCIENCE & ENGINEERING

Reading the clock is a “non-mover”

You can only have one of these,
and it must be the “atomic point”

02/07/2025 EECS498-003 31

	EECS498-003 Formal Verification of Systems Software
	Refinement recap
	Slide 3
	Slide 4
	The verification game
	Slide 6
	What if the abstraction function pretended nothing ever happene
	…or just made up a fake story?
	Events to the rescue
	Application correspondence
	The Abstraction function is untrusted
	The Abstraction function must be untrusted
	Administrivia
	Revisiting the distributed system model
	Are the steps really atomic?
	A distributed execution in real life
	Concurrency containment
	Concurrency containment (2)
	Concurrency containment (3)
	The concept of “movers”
	Local computations can move either way
	Receives are right movers
	Receives are not left movers
	Sends are left movers
	Sends are not right movers
	Summary of movers
	Creating the atomic trace
	Creating the atomic trace (2)
	The atomic trace is legal
	The atomic trace preserves failures
	Reading the clock is a “non-mover”

