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Distributed system

Host

Refinement recap

NetworkHostHost

Spec
ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
    requires Init(v)
    ensures Inv(v) // Inv base case
    ensures Spec.Init(Abstraction(v))  // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
    requires Next(v, v’, evt)
    requires Inv(v)
    ensures Inv(v')  // Inv inductive step
    ensures Spec.Next(Abstraction(v), Abstraction(v’), evt) 

|| Abstraction(v) == Abstraction(v’) && evt == NoOp 
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Build system

Distributed system

Host
NetworkHostHost

Spec

Host

code you need to inspect code the verifier checks for you
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Distributed system

Host
NetworkHostHost

Spec

Host

*.t.dfy
(Trusted)

*.v.dfy
(Verified)

code you need to inspect code the verifier checks for you
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The verification game

• Player 1: the benign verification expert
• Player 2: the malicious engineer

Player 1 sets up the trusted environment
(i.e. all .t.dfy files)

Player 2 writes the implementation and proof
(i.e. all .v.dfy files)

Player 1 runs the build system
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Distributed system

Host
NetworkHostHost

Spec

Host

*.t.dfy
(Trusted)

*.v.dfy
(Verified)

Q: Can the abstraction function Abstraction() be untrusted?

code you need to inspect code the verifier checks for you
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function Abstraction(v:Variables) : 
Spec.Variables {

var a0 :| SpecInit(a0);
a0

}

predicate Inv(v:Variables) { true }

Always returns the 
initial state

What if the abstraction function pretended 
nothing ever happened?
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datatype Variables = 
Variables(actualState: Stuff, fakeState: 
HostState)

function Abstraction(v:Variables) : 
Spec.Variables {

v.fakeState
}

Returns fake state

…or just made up a fake story?
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Events to the rescue
ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
    requires Init(v)
    ensures Inv(v) // Inv base case
    ensures Spec.Init(Abstraction(v))  // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
    requires Next(v, v’, evt)
    requires Inv(v)
    ensures Inv(v')  // Inv inductive step
    ensures Spec.Next(Abstraction(v), Abstraction(v’), evt) // Refinement 
inductive step
        || Abstraction(v) == Abstraction(v’) && evt == NoOp // OR stutter step
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Application correspondence

Spec

Implementation/protocol

S0 S1 S2 S3 S4

I0 I1 I2 I3 I4
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Distributed system

Host
Network

HostHost

Spec

Host

*.t.dfy
(Trusted)

*.v.dfy
(Untrusted)

The Abstraction function is untrusted
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The Abstraction function must be untrusted

• If it were trusted, we would have to inspect it

• To fully understand it, we would also have to inspect the entire low-
level state

• The entire edifice of verification would collapse!
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Administrivia

• Project 1 due today

• PS4 released tomorrow 

• No class next Tuesday 11/12
• Manos out of town
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Revisiting the distributed system model

• Composite state machine
• Hosts
• Network
• Time

Distributed system

Host

Network
HostHost

Time

S0 S1 S2 S3 S4

In each step of this state machine:
• at most one Host takes a step, together with the Network
• or Time advances
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Are the steps really atomic?

Host A Step 1 Host A Step 2

Host B Step 1 Host B Step 2 Host B Step 3

Host A Step 3

Hosts are single-threaded, but we need to 
reason about concurrency among hosts

S0 S1 S2 S3 S4

There is some concurrency to worry about

Model:

Reality:
R L SL L
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A distributed execution in real life

R R R

R RR

L L L L L L L L L LS S S S S

S S SSSS L L L LL LLL

R L

LL R R

R

Reason about all possible 
interleavings of the substeps?

R Receive S SendL Local processingHost A Host B
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Concurrency containment

R Receive S SendL Local processingHost A Host B

Enforce that all receives precede all sends
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

Assume in proof that all host steps are atomic
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Concurrency containment

R Receive S SendL Local processingHost A Host B

Reduction argument: for every real trace…
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR
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R Receive S SendL Local processingHost A Host B

Reduction argument: for every real trace…
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

…there is a corresponding legal trace with atomic host steps 
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

Concurrency containment
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The concept of “movers”

x=0

y=1

R Receive S SendL Local processingHost A Host B

x=0

y=1

Actual execution

Indistinguishable 
execution
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Local computations can move either way

x=0

y=1

R Receive S SendL Local processingHost A Host B

Actual execution

x=0

y=1

Indistinguishable 
execution
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Receives are right movers

R

y=1

R Receive S SendL Local processingHost A Host B

R

y=1

Actual execution

Indistinguishable 
execution

R

S

R

S

R

R

R

R
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Receives are not left movers

R

S

R Receive S SendL Local processingHost A Host B

R

S

Actual execution

Indistinguishable 
execution
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Sends are left movers

y=1

R Receive S SendL Local processingHost A Host B

y=1

Actual execution

Indistinguishable 
execution

R

S

R

S

S

S

S

S

S

S
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Sends are not right movers

R

S

R Receive S SendL Local processingHost A Host B

R

S

Actual execution

Indistinguishable 
execution
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Summary of movers

• Local computation moves both ways
• Sends move to the left
• Receives move to the right
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Creating the atomic trace

R R R

R RR

L L L L L L L L L LS S S S S

S S SSSS L L L LL LLL

R L

LL R R

R

R Receive S SendL Local processingHost A Host B
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Creating the atomic trace

R L L S

SLLL

R Receive S SendL Local processingHost A Host B

We can keep moving individual instructions to the left/right, until the 
entire action is atomic (i.e. does not interleave with other actions)
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The atomic trace is legal

L

R Receive S SendL Local processingHost A Host B

Local event ordering is preserved

Packets are never received before they’re sent
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R Receive S SendL Local processingHost A Host B

Real trace
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

Reduced trace

The atomic trace preserves failures
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CL L LS SR

Reading the clock is a “non-mover”

You can only have one of these, 
and it must be the “atomic point”
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