
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

02/07/2025 EECS498-003 2

Distributed system

Host

Refinement recap

NetworkHostHost

Spec
ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
 requires Init(v)
 ensures Inv(v) // Inv base case
 ensures Spec.Init(Abstraction(v)) // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v’, evt)
 requires Inv(v)
 ensures Inv(v') // Inv inductive step
 ensures Spec.Next(Abstraction(v), Abstraction(v’), evt)

|| Abstraction(v) == Abstraction(v’) && evt == NoOp

02/07/2025 EECS498-003 3

Build system

Distributed system

Host
NetworkHostHost

Spec

Host

code you need to inspect code the verifier checks for you

02/07/2025 EECS498-003 4

Distributed system

Host
NetworkHostHost

Spec

Host

*.t.dfy
(Trusted)

*.v.dfy
(Verified)

code you need to inspect code the verifier checks for you

02/07/2025 EECS498-003 5

The verification game

• Player 1: the benign verification expert
• Player 2: the malicious engineer

Player 1 sets up the trusted environment
(i.e. all .t.dfy files)

Player 2 writes the implementation and proof
(i.e. all .v.dfy files)

Player 1 runs the build system

02/07/2025 EECS498-003 6

Distributed system

Host
NetworkHostHost

Spec

Host

*.t.dfy
(Trusted)

*.v.dfy
(Verified)

Q: Can the abstraction function Abstraction() be untrusted?

code you need to inspect code the verifier checks for you

02/07/2025 EECS498-003 7

function Abstraction(v:Variables) :
Spec.Variables {

var a0 :| SpecInit(a0);
a0

}

predicate Inv(v:Variables) { true }

Always returns the
initial state

What if the abstraction function pretended
nothing ever happened?

02/07/2025 EECS498-003 8

datatype Variables =
Variables(actualState: Stuff, fakeState:
HostState)

function Abstraction(v:Variables) :
Spec.Variables {

v.fakeState
}

Returns fake state

…or just made up a fake story?

02/07/2025 EECS498-003 9

Events to the rescue
ghost function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
 requires Init(v)
 ensures Inv(v) // Inv base case
 ensures Spec.Init(Abstraction(v)) // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v’, evt)
 requires Inv(v)
 ensures Inv(v') // Inv inductive step
 ensures Spec.Next(Abstraction(v), Abstraction(v’), evt) // Refinement
inductive step
 || Abstraction(v) == Abstraction(v’) && evt == NoOp // OR stutter step

02/07/2025 EECS498-003 10

Application correspondence

Spec

Implementation/protocol

S0 S1 S2 S3 S4

I0 I1 I2 I3 I4

02/07/2025 EECS498-003 11

Distributed system

Host
Network

HostHost

Spec

Host

*.t.dfy
(Trusted)

*.v.dfy
(Untrusted)

The Abstraction function is untrusted

02/07/2025 EECS498-003 12

The Abstraction function must be untrusted

• If it were trusted, we would have to inspect it

• To fully understand it, we would also have to inspect the entire low-
level state

• The entire edifice of verification would collapse!

02/07/2025 EECS498-003 13

Administrivia

• Project 1 due today

• PS4 released tomorrow

• No class next Tuesday 11/12
• Manos out of town

02/07/2025 EECS498-003 14

Revisiting the distributed system model

• Composite state machine
• Hosts
• Network
• Time

Distributed system

Host

Network
HostHost

Time

S0 S1 S2 S3 S4

In each step of this state machine:
• at most one Host takes a step, together with the Network
• or Time advances

02/07/2025 EECS498-003 15

Are the steps really atomic?

Host A Step 1 Host A Step 2

Host B Step 1 Host B Step 2 Host B Step 3

Host A Step 3

Hosts are single-threaded, but we need to
reason about concurrency among hosts

S0 S1 S2 S3 S4

There is some concurrency to worry about

Model:

Reality:
R L SL L

02/07/2025 EECS498-003 16

A distributed execution in real life

R R R

R RR

L L L L L L L L L LS S S S S

S S SSSS L L L LL LLL

R L

LL R R

R

Reason about all possible
interleavings of the substeps?

R Receive S SendL Local processingHost A Host B

02/07/2025 EECS498-003 17

Concurrency containment

R Receive S SendL Local processingHost A Host B

Enforce that all receives precede all sends
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

Assume in proof that all host steps are atomic

02/07/2025 EECS498-003 18

Concurrency containment

R Receive S SendL Local processingHost A Host B

Reduction argument: for every real trace…
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

02/07/2025 EECS498-003 19

R Receive S SendL Local processingHost A Host B

Reduction argument: for every real trace…
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

…there is a corresponding legal trace with atomic host steps
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

Concurrency containment

02/07/2025 EECS498-003 20

The concept of “movers”

x=0

y=1

R Receive S SendL Local processingHost A Host B

x=0

y=1

Actual execution

Indistinguishable
execution

02/07/2025 EECS498-003 21

Local computations can move either way

x=0

y=1

R Receive S SendL Local processingHost A Host B

Actual execution

x=0

y=1

Indistinguishable
execution

02/07/2025 EECS498-003 22

Receives are right movers

R

y=1

R Receive S SendL Local processingHost A Host B

R

y=1

Actual execution

Indistinguishable
execution

R

S

R

S

R

R

R

R

02/07/2025 EECS498-003 23

Receives are not left movers

R

S

R Receive S SendL Local processingHost A Host B

R

S

Actual execution

Indistinguishable
execution

02/07/2025 EECS498-003 24

Sends are left movers

y=1

R Receive S SendL Local processingHost A Host B

y=1

Actual execution

Indistinguishable
execution

R

S

R

S

S

S

S

S

S

S

02/07/2025 EECS498-003 25

Sends are not right movers

R

S

R Receive S SendL Local processingHost A Host B

R

S

Actual execution

Indistinguishable
execution

02/07/2025 EECS498-003 26

Summary of movers

• Local computation moves both ways
• Sends move to the left
• Receives move to the right

02/07/2025 EECS498-003 27

Creating the atomic trace

R R R

R RR

L L L L L L L L L LS S S S S

S S SSSS L L L LL LLL

R L

LL R R

R

R Receive S SendL Local processingHost A Host B

02/07/2025 EECS498-003 28

Creating the atomic trace

R L L S

SLLL

R Receive S SendL Local processingHost A Host B

We can keep moving individual instructions to the left/right, until the
entire action is atomic (i.e. does not interleave with other actions)

02/07/2025 EECS498-003 29

The atomic trace is legal

L

R Receive S SendL Local processingHost A Host B

Local event ordering is preserved

Packets are never received before they’re sent

02/07/2025 EECS498-003 30

R Receive S SendL Local processingHost A Host B

Real trace
R RL L LS S

R R S S SL L L L L

RL L LS SR

SLLL R SS LLR R

L L L LSLR

Reduced trace

The atomic trace preserves failures

02/07/2025 EECS498-003 31

CL L LS SR

Reading the clock is a “non-mover”

You can only have one of these,
and it must be the “atomic point”

	EECS498-003 Formal Verification of Systems Software
	Refinement recap
	Slide 3
	Slide 4
	The verification game
	Slide 6
	What if the abstraction function pretended nothing ever happene
	…or just made up a fake story?
	Events to the rescue
	Application correspondence
	The Abstraction function is untrusted
	The Abstraction function must be untrusted
	Administrivia
	Revisiting the distributed system model
	Are the steps really atomic?
	A distributed execution in real life
	Concurrency containment
	Concurrency containment (2)
	Concurrency containment (3)
	The concept of “movers”
	Local computations can move either way
	Receives are right movers
	Receives are not left movers
	Sends are left movers
	Sends are not right movers
	Summary of movers
	Creating the atomic trace
	Creating the atomic trace (2)
	The atomic trace is legal
	The atomic trace preserves failures
	Reading the clock is a “non-mover”

