
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

02/07/2025 EECS498-003 2

A primary-backup protocol

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

NoOp NoOp NoOp
Execute
batch NoOp

02/07/2025 EECS498-003 3

World-visible events

Process 1 Process 2 Process 3

File system

Create(”/file1”) Create(”/file2”) Open(”/file1”)

Which of these behaviors are correct?
(assuming an initially empty file system)

Create(f, ”/file1”) (returns OK)
Create(f, ”/file2”) (returns OK)
Create(d, ”/dir”) (returns OK)
Create(f, ”/dir/file1”)(returns OK)

Create(f, ”/file1”) (returns OK)
Create(f, ”/file2”) (returns OK)
Create(f, ”/dir/file1”)(returns Err)

Create(f, ”/file1”) (returns OK)
Write(f, ”/file2”) (returns OK)
Create(d, ”/dir”) (returns OK)
Create(f, ”/dir/file1”)(returns OK)

Behavior #1

Behavior #2

Behavior #3

02/07/2025 EECS498-003 4

World-visible events

Client 1 Client 2 Client 3

Lock Service

Acquire
Release

Acquire

Which of these behaviors are correct?
(assuming no one holds the lock initially)

Acquire(client1)
Acquire(client1)
Release(client1)
Release(client1)

Release(client2)
Acquire(client1)
Release(client1)

Acquire(client1)
Release(client1)
Acquire(client2)

Behavior #1

Behavior #2

Behavior #3

02/07/2025 EECS498-003 5

World-visible events

Client 1 Client 2 Client 3

Bank

Deposit(c1,4)
Withdraw(c1,2
)

Deposit(c3,6)

Which of these behaviors are correct?
(assuming all account are initially empty)

Deposit(client1, 6) (returns OK)
Withdraw(client1, 3) (returns OK)
Withdraw(client1, 2) (returns OK)
Deposit(client1, 3) (returns Err)

Deposit(client1, 6) (returns OK)
Withdraw(client1, 3) (returns OK)
Withdraw(client2, 2) (returns OK)

Deposit(client1, 6) (returns OK)
Withdraw(client1, 3) (returns OK)
Withdraw(client1, 2) (returns OK)
Withdraw(client1, 3) (returns Err)

Behavior #1

Behavior #2

Behavior #3

Deposit(c2,5)

02/07/2025 EECS498-003 6

Events define correctness

One should be able to evaluate the correctness of the system by
inspecting a behavior (sequence) consisting of world-visible events

File system:

Create(f,”/file1”)
 (returns OK)

Create(f,”/file2”)
(returns OK)

Create(d, ”/dir”)
(returns OK)

Lock service:

Acquire(client1) Release(client1) Acquire(client2)

Bank:

Deposit(client1,4) Withdraw(client1,3) Deposit(client2,5)

02/07/2025 EECS498-003 7

Event-enriched spec state machines

We will be adding events to our spec state machines

For example, the lock service would use this Event datatype:

The Next() transition will now be parameterized by an Event:

datatype Event = Acquire(clientId:nat) | Release(clientId:nat) | NoOp

ghost predicate Next(c: Constants, v: Variables, v': Variables, evt: Event)

02/07/2025 EECS498-003 8

Example: Bank spec state machine

client1: 0
client2: 0
client3: 0

Next(c,v,v’,
Deposit(client1,4))

Next(c,v,v’,
Withdraw(client1,3))

Next(c,v,v’,
Deposit(client2,5))

client1: 4
client2: 0
client3: 0

client1: 1
client2: 0
client3: 0

client1: 1
client2: 5
client3: 0

DepositAction(c,v,v’,
Deposit(client1,4))

02/07/2025 EECS498-003 9

Event-enriched protocol state machines

We will also be adding events to our protocol state machines

Using the exact same type as the spec state machine uses
E.g. for lock service

The Next() transition of both Host and DistributedSystem will now be
parameterized by an Event:

datatype Event = Acquire(clientId:nat) | Release(clientId:nat) | NoOp

ghost predicate Next(c: Constants, v: Variables, v': Variables, evt: Event)

02/07/2025 EECS498-003 10

Event-enriched state machines

…and bound together using the Event as a binding variable
module DistributedSystem {
...
ghost predicate NextStep(c: Constants, v: Variables, v': Variables, evt: Event,
step: Step)
{
 // HostAction calls Host.Next with evt
 && HostAction(c, v, v', evt, step.hostid, step.msgOps)
 && Network.Next(c.network, v.network, v'.network, step.msgOps)
}

ghost predicate Next(c: Constants, v: Variables, v': Variables, evt: Event)
{
 exists step :: NextStep(c, v, v', evt, step)
}

02/07/2025 EECS498-003 11

The Abstraction function

13 ￫ C
23 ￫ A
47 ￫ D
71 ￫ B

13 ￫ C
23 ￫ A
71 ￫ B

23 ￫ A
71 ￫ B

23 ￫ A(empty)

13 ￫ C

-

23 ￫ A

47 ￫ D

71 ￫ B

13 ￫ C

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

-

-

-

-

-

-

function Abstraction(lv:HashTblState) : (hv:MapSpec.Variables)
{
 ...
}

02/07/2025 EECS498-003 12

A primary-backup protocol

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

NoOp NoOp NoOp
Execute
batch NoOp

What is the
abstraction
function?

02/07/2025 EECS498-003 13

A refinement proof

13 ￫ C
23 ￫ A
71 ￫ B

23 ￫ A
71 ￫ B

(empty)

13 ￫ C

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

71 ￫ B

-

-

-

-

-

02/07/2025 EECS498-003 14

A refinement proof
function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
 requires Init(v)
 ensures Inv(v) // Inv base case
 ensures Spec.Init(Abstraction(v)) // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v’, evt)
 requires Inv(v)
 ensures Inv(v') // Inv inductive step
 ensures Spec.Next(Abstraction(v), Abstraction(v’), evt) // Refinement
inductive step
 || Abstraction(v) == Abstraction(v’) && evt == NoOp // OR stutter step

02/07/2025 EECS498-003 15

Project 1: Distributed lock service

• No centralized server that coordinates who holds the lock
• The hosts pass the lock amongst themselves

• The hosts communicate via asynchronous messages
• A single state machine transition cannot read/update the state of

two hosts

Differences from centralized lock server

02/07/2025 EECS498-003 16

Distributed lock server

Host 0

Host 1

Host 2

Host 3
…

Host N-1

Host N-2

• N = numHosts, defined in network.t.dfy
• Messages are asynchronous (i.e. sending and

receiving are two separate steps)

02/07/2025 EECS498-003 17

Distributed lock server

Host 5 Host 3

The lock is associated with a monotonically
increasing epoch number

epoch = 23

epoch = 24

epoch = 24

Accept an incoming message
only if it has a higher epoch
number than your current epoch

02/07/2025 EECS498-003 18

Distributed lock server

The desirable property is the same as the centralized lock
server: at most one node holds the lock at any given time

Safety property:

02/07/2025 EECS498-003 19

Project files

network.t.dfy host.v.dfy

distributed_system.t.dfy exercise01.dfy

Framework files
(trusted/immutable)

Host and proof files
(for you to complete)

02/07/2025 EECS498-003 20

Case study: a moving counter

• Hosts pass a counter around
• They can increment it or send it to someone else
• Three types of protocol steps: Increment, Send, Receive

• No duplicates in the network

• Spec: a counter

02/07/2025 EECS498-003 21

Case study: a moving counter

v v’

Increment(v,v’)

v v’

Increment(v,v’)

v v’

Send (v,v’)

v v’

NoOp(v,v’)

v v’

Receive(v,v’)

v v’

NoOp(v,v’)

Protocol

Spec

VSCode
transition

	EECS498-003 Formal Verification of Systems Software
	A primary-backup protocol
	World-visible events
	World-visible events (2)
	World-visible events (3)
	Events define correctness
	Event-enriched spec state machines
	Example: Bank spec state machine
	Event-enriched protocol state machines
	Event-enriched state machines
	The Abstraction function
	A primary-backup protocol (2)
	A refinement proof
	A refinement proof (2)
	Project 1: Distributed lock service
	Distributed lock server
	Distributed lock server (2)
	Distributed lock server (3)
	Project files
	Case study: a moving counter
	Case study: a moving counter (2)

