
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

02/07/2025 EECS498-003 2

Chapter 6: Refinement

02/07/2025 EECS498-003 3

State machines: a versatile tool

State machines can be used to
• Model the program
• Model environment components
• Model how the system (program+environment) fits together
• Specify the system behavior

02/07/2025 EECS498-003 4

Different ways to specify behavior

• C-style assertions

• Postconditions

• Properties/invariants

• Refinement to a state machine

Distributed system

Host
NetworkHostHost

Spec

02/07/2025 EECS498-003 5

Example: hashtable
module HashTable {
 datatype Variables = Variables(tbl:seq<Pair<int, string>>)

 predicate Insert(v:Variables, v’:Variables, key:int,
val:string) {
 var free := Probe(v.tbl, key);
 && free.Some?
 && v’.tbl == v.tbl[free.value := Pair(key, val)]
 }
}

13 ￫ C

-

23 ￫ A

47 ￫ D

71 ￫ B

13 ￫ C

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

-

-

-

-

-

-

02/07/2025 EECS498-003 6

The spec: a simple map
13 ￫ C
23 ￫ A
47 ￫ D
71 ￫ B

13 ￫ C
23 ￫ A
71 ￫ B

23 ￫ A
71 ￫ B

23 ￫ A(empty)

module MapSpec {
 datatype Variables = Variables(mapp:map<Key, Value>)

 predicate InsertOp(v:Variables, v':Variables, key:Key,
value:Value) {
 && v'.mapp == v.mapp[key := value]
 }
}

02/07/2025 EECS498-003 7

Refinement

13 ￫ C
23 ￫ A
47 ￫ D
71 ￫ B

13 ￫ C
23 ￫ A
71 ￫ B

23 ￫ A
71 ￫ B

23 ￫ A(empty)

13 ￫ C

-

23 ￫ A

47 ￫ D

71 ￫ B

13 ￫ C

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

-

-

-

-

-

-

02/07/2025 EECS498-003 8

The benefits of refinement

Refinement is very powerful
• Can specify systems that are hard to specify otherwise
• E.g. linearizability

Refinement allows for good specs
• Abstract: elide implementation details
• Concise: simple state machine
• Complete: better than a “bag of properties”
• But if you want, you can prove properties about the spec

02/07/2025 EECS498-003 9

A sharded key-value store

(empty)

-

-

-

-

-

23 ￫ A
23 ￫ A
71 ￫ B

13 ￫ C
23 ￫ A
71 ￫ B

13 ￫ C
23 ￫ A
47 ￫ D
71 ￫ B

Host 1

Host 2
-

Host 1

Host 2

-

-

23 ￫ A

-

-

-

Host 1

Host 2

-

-

23 ￫ A

-

71 ￫ B

-

Host 1

Host 2

13 ￫ C

-

23 ￫ A

-

71 ￫ B

-

Host 1

Host 2

13 ￫ C

-

23 ￫ A

47 ￫ D

71 ￫ B

-

Logically centralized, physically distributed

02/07/2025 EECS498-003 10

Stutter steps

(empty)

-

-

-

-

-

23 ￫ A
23 ￫ A
71 ￫ B

23 ￫ A
71 ￫ B

Host 1

Host 2
-

Host 1

Host 2

-

-

23 ￫ A

-

-

-

Host 1

Host 2

-

-

23 ￫ A

-

71 ￫ B

-

Host 1

Host 2

23 ￫ A

-

-

-

71 ￫ B

-
One normal
step for the

implementation

One “stutter”
step for the spec

02/07/2025 EECS498-003 11

Midterm exam

• Well done! Midterm stats:
• Median: 72
• Std dev: 23.5
• Passing grade: 36.75

• Your average exam score must be above the average passing grade

• Review session will be held this week during this week’s lab
• Last chance to close gaps in your understandings

02/07/2025 EECS498-003 12

Regrade requests

• Regrade requests will open after the review session
• They will stay open for a week

• Submit clear reasoning for why you think your answer is correct
• We will optionally re-grade the entire question or exam
• Your grade may go up or down as a result

02/07/2025 EECS498-003 13

Administrivia

• No class on Tuesday, Nov 5
• Travel for me, vote for you

• No class on Tuesday, Nov 12
• Just travel for me

• PS3 due this Thursday, Oct 24
• Project 1 released Friday, Oct 25

02/07/2025 EECS498-003 14

A primary-backup protocol

Clients
PrimaryPrimary

BackupBackup

02/07/2025 EECS498-003 15

A primary-backup protocol

Client

Primary

Backup

update

request

ack

reply

02/07/2025 EECS498-003 16

A primary-backup protocol

Client

Primary

Backup

update

request
(x := 7)

Client
request
(read x)

ack

reply
(done)

reply
(x == 7)

02/07/2025 EECS498-003 17

A primary-backup protocol

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

Primary

Backup

NoOp NoOp NoOp
Execute
batch NoOp

02/07/2025 EECS498-003 20

Project 1: Distributed lock service

• No centralized server that coordinates who holds the lock
• The hosts pass the lock amongst themselves

• The hosts communicate via asynchronous messages
• A single state machine transition cannot read/update the state of

two hosts

Differences from centralized lock server

02/07/2025 EECS498-003 21

Distributed lock server

Host 0

Host 1

Host 2

Host 3
…

Host N-1

Host N-2

• N = numHosts, defined in network.t.dfy
• Messages are asynchronous (i.e. sending and

receiving are two separate steps)

02/07/2025 EECS498-003 22

Distributed lock server

Host 5 Host 3

The lock is associated with a monotonically
increasing epoch number

epoch = 23

epoch = 24

epoch = 24

Accept an incoming message
only if it has a higher epoch
number than your current epoch

02/07/2025 EECS498-003 23

Distributed lock server

The desirable property is the same as the centralized lock
server: at most one node holds the lock at any given time

Safety property:

02/07/2025 EECS498-003 24

Project files

network.t.dfy host.v.dfy

distributed_system.t.dfy exercise01.dfy

Framework files
(trusted/immutable)

Host and proof files
(for you to complete)

02/07/2025 EECS498-003 25

World-visible events

Process 1 Process 2 Process 3

File system

Create(”/file1”) Create(”/file2”) Open(”/file1”)

Which of these behaviors are correct?
(assuming an initially empty file system)

Create(f, ”/file1”) (returns OK)
Create(f, ”/file2”) (returns OK)
Create(d, ”/dir”) (returns OK)
Create(f, ”/dir/file1”)(returns OK)

Create(f, ”/file1”) (returns OK)
Create(f, ”/file2”) (returns OK)
Create(f, ”/dir/file1”)(returns Err)

Create(f, ”/file1”) (returns OK)
Write(f, ”/file2”) (returns OK)
Create(d, ”/dir”) (returns OK)
Create(f, ”/dir/file1”)(returns OK)

Behavior #1

Behavior #2

Behavior #3

02/07/2025 EECS498-003 26

World-visible events

Client 1 Client 2 Client 3

Lock Service

Acquire
Release

Acquire

Which of these behaviors are correct?
(assuming no one holds the lock initially)

Acquire(client1)
Acquire(client1)
Release(client1)
Release(client1)

Release(client2)
Acquire(client1)
Release(client1)

Acquire(client1)
Release(client1)
Acquire(client2)

Behavior #1

Behavior #2

Behavior #3

02/07/2025 EECS498-003 27

World-visible events

Client 1 Client 2 Client 3

Bank

Deposit(c1,4)
Withdraw(c1,2
)

Deposit(c3,6)

Which of these behaviors are correct?
(assuming all account are initially empty)

Deposit(client1, 6) (returns OK)
Withdraw(client1, 3) (returns OK)
Withdraw(client1, 2) (returns OK)
Deposit(client1, 3) (returns Err)

Deposit(client1, 6) (returns OK)
Withdraw(client1, 3) (returns OK)
Withdraw(client2, 2) (returns OK)

Deposit(client1, 6) (returns OK)
Withdraw(client1, 3) (returns OK)
Withdraw(client1, 2) (returns OK)
Withdraw(client1, 3) (returns Err)

Behavior #1

Behavior #2

Behavior #3

Deposit(c2,5)

02/07/2025 EECS498-003 28

Events define correctness

One should be able to evaluate the correctness of the system by
inspecting a behavior (sequence) consisting of world-visible events

File system:

Create(f,”/file1”)
 (returns OK)

Create(f,”/file2”)
(returns OK)

Create(d, ”/dir”)
(returns OK)

Lock service:

Acquire(client1) Release(client1) Acquire(client2)

Bank:

Deposit(client1,4) Withdraw(client1,3) Deposit(client2,5)

02/07/2025 EECS498-003 29

Event-enriched state machines

We will be adding events to our spec state machines

For example, the lock service would use this Event datatype:

The Next() transition will now be parameterized by an Event:

datatype Event = Acquire(clientId:nat | Release(clientId:nat) | NoOp

ghost predicate Next(c: Constants, v: Variables, v': Variables, evt: Event)

02/07/2025 EECS498-003 30

Example: Bank spec state machine

client1: 0
client2: 0
client3: 0

Next(c,v,v’,
Deposit(client1,4))

Next(c,v,v’,
Withdraw(client1,3))

Next(c,v,v’,
Deposit(client2,5))

client1: 4
client2: 0
client3: 0

client1: 1
client2: 0
client3: 0

client1: 1
client2: 5
client3: 0

DepositAction(c,v,v’,
Deposit(client1,4))

02/07/2025 EECS498-003 31

Event-enriched state machines

We will also be adding events to our protocol state machines

Using the exact same type as the spec state machine uses
E.g. for lock service

The Next() transition of both Host and DistributedSystem will now be
parameterized by an Event:

datatype Event = Acquire(clientId:nat | Release(clientId:nat) | NoOp

ghost predicate Next(c: Constants, v: Variables, v': Variables, evt: Event)

02/07/2025 EECS498-003 32

Event-enriched state machines

…and bound together using the Event as a binding variable
module DistributedSystem {
...
ghost predicate NextStep(c: Constants, v: Variables, v': Variables, evt: Event,
step: Step)
{
 // HostAction calls Host.Next with evt
 && HostAction(c, v, v', evt, step.hostid, step.msgOps)
 && Network.Next(c.network, v.network, v'.network, step.msgOps)
}

ghost predicate Next(c: Constants, v: Variables, v': Variables, evt: Event)
{
 exists step :: NextStep(c, v, v', evt, step)
}

02/07/2025 EECS498-003 33

The Abstraction function

13 ￫ C
23 ￫ A
47 ￫ D
71 ￫ B

13 ￫ C
23 ￫ A
71 ￫ B

23 ￫ A
71 ￫ B

23 ￫ A(empty)

13 ￫ C

-

23 ￫ A

47 ￫ D

71 ￫ B

13 ￫ C

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

71 ￫ B

-

-

23 ￫ A

-

-

-

-

-

-

-

function Abstraction(lv:HashTblState) : (hv:MapSpec.Variables)
{
 ...
}

34

A refinement proof
function Abstraction(v:Variables) : Spec.Variables
predicate Inv(v:Variables)

lemma RefinementInit(v:Variables)
 requires Init(v)
 ensures Inv(v) // Inv base case
 ensures Spec.Init(Abstraction(v)) // Refinement base case

lemma RefinementNext(v:Variables, v':Variables)
 requires Next(v, v’, evt)
 requires Inv(v)
 ensures Inv(v') // Inv inductive step
 ensures Spec.Next(Abstraction(v), Abstraction(v’), evt) // Refinement
inductive step
 || Abstraction(v) == Abstraction(v’) && evt == NoOp // OR stutter step

	EECS498-003 Formal Verification of Systems Software
	Chapter 6: Refinement
	State machines: a versatile tool
	Different ways to specify behavior
	Example: hashtable
	The spec: a simple map
	Refinement
	The benefits of refinement
	A sharded key-value store
	Stutter steps
	Midterm exam
	Regrade requests
	Administrivia
	A primary-backup protocol
	A primary-backup protocol (2)
	A primary-backup protocol (3)
	A primary-backup protocol (4)
	Project 1: Distributed lock service
	Distributed lock server
	Distributed lock server (2)
	Distributed lock server (3)
	Project files
	World-visible events
	World-visible events (2)
	World-visible events (3)
	Events define correctness
	Event-enriched state machines
	Example: Bank spec state machine
	Event-enriched state machines (2)
	Event-enriched state machines (3)
	The Abstraction function
	A refinement proof (2)

