GOMPUTER SCIENCE & ENGINEERING

EECS498-003
Formal Verification of
Systems Software

Material and slides created by

Jon Howell and Manos Kapritsos

COMPUTER SCIENCE & ENGINEERING
Modeling distributed systems

A distributed system is composed of multiple hosts

Distributed system Distributed System: attempt #1
module DistributedSystem {
Host Host datatype Variables =
Variables(hosts:seq<Host.Variables>)

predicate Next (v:Variables, v’:Variables, hostid: nat)

{
Host Host && Host.Next(v.hosts[hostid],v'.hosts[hostid]))
&& forall otherHost:nat | otherHost != hostid ::
v'.hosts[otherHost] == v.hosts[otherHost]
}

COMPUTER SCIENCE & ENGINEERING
Modeling the network - Ordering

In order delivery Out of order delivery

02/07/2025 EECS498-009 3

GOMPUTER SCIENCE & ENGINEERING

Modeling the network - Duplication

* Can the network duplicate messages?

* How does that affect our network model?

COMPUTER SCIENCE & ENGINEERING
Modeling the network - Integrity

* Can the network tamper with messages?

* How does that affect our network model?

Modeling the network

Distributed system

Host

Network

Host

Host

Host

02/07/2025

COMPUTER SCIENCE & ENGINEERING

datatype Option<T> = Some(value:T) | None

datatype MessageOps = MessageOps (
recv:0ption<Message>,

send:0ption<Message>)

Network module
module Network {
datatype Variables =
Variables(sentMsgs: set<Message>)

predicate Next(v, v’', msgOps:MessageOps) {
// can only receive messages that have been sent

&& (msgOps.recv.Some? ==> msgOps.recv.value in
v.sentMsgs)

// Record the sent message, if there was one
&& v'.sentMsgs ==
v.sentMsgs + if msgOps.send.None? then {}
else {msgOps.send.value}

} EECS498-003 6

GOMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts and a network

Distributed system: attempt #2
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,
network: Network.Variables)

Distributed system

Host

predicate HostAction(v, v’, hostid, msgOps) {

Network

&S Host.Next(v.hosts[hostid],v'.hosts[hostid],msgOps))
Host & forall otherHost:nat | otherHost != hostid ::

Host

v'.hosts[otherHost] == v.hosts[otherHost]

predicate Next(v, v’, hostid, msgOps: MessageOps) {

Host
&& HostAction(v, v’, hostid, msgOps)

&& Network.Next(v, v’, mqukil__::>>lmndmgvaname

}
}

COMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts, a network and clocks

Distributed system: attempt #3
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,

network: Network.Variables,

Distributed system time: Time.Variables)

Host Host Eredicate Next(v, v’, hostid, msgOps: MessageOps,
clk:Time) {

|| (&& HostAction(v, v’', hostid, msgOps)
&& Network.Next(v, v’, msgOps)
&& Time.Read(v.time, clk))

|| (&& Time.Advance(v.time, v’'.time)
&& v’ .hosts == v.hosts

Network

Time

Host Host

&& v’ .network == v.network)

COMPUTER SCIENCE & ENGINEERING

This modeling applies to all asynchronous systems

module DistributedSystem {
datatype Variables =
Variables(fs: FileSystem.Variables,
disk: Disk.Variables)

"Distributed” system

predicate Next(v, v’) {

|| (exists io ::
: && FileSystem.Next(v.fs, v’'.fs, do0)
File system : .y)
Gnﬂnenlwysune Disk && Disk.Next(v.disk, V',disk"¢6}lﬁndmgvanaMe
|| (// Crash!

&S FileSystem.Init(v'.fs)
&& v'.disk == v.disk
)

COMPUTER SCIENCE & ENGINEERING

Trusted vs proven

Time can advance File system (kernel)
between any host steps can crash

Distributed system Distributed system

Network
Network might / - Disk
reorder packets i \

Disk might reorder

concurrent writes
|

02/07/2025 EECS498-003 10

COMPUTER SCIENCE & ENGINEERING
srFaFEsTeNe: the systems specification
SAaNAWwWIC

usted application spec

N
trusted environment assumptions

image: pixabay

02/07/2025 EECS498-003 11

GOMPUTER SCIENCE & ENGINEERING

Midterm logistics

* Time: Thursday, October 17, 6-8pm
* Location: BBB 1670

* Closed-book exam, allowed one "cheat-sheet”, double-sided, 10pt
minimum

* We assume knowledge of Dafny, but no "guessing”

Administrivia

* No lectures next week
* Tuesday is Fall study break
* Thursday is the midterm

* Also, no lab next week
* | will still hold OH next Thursday

* Please fill out midterm evaluations
* Grad students: 80%
* Undergrad students: 17%

GOMPUTER SCIENCE & ENGINEERING

GOMPUTER SCIENCE & ENGINEERING

Recap of Chapters 1-4

GOMPUTER SCIENCE & ENGINEERING

Recap of Chapter 1: Dafny mechanics

* Primitive types
* Quantifiers

* Assertions

* Recursion

* Loop invariants

* Datatypes
* Triggers

COMPUTER SCIENCE & ENGINEERING
Triggers

* Q: Does Dafny verify this code?

predicate P(x int)
predicate Q(

method test()
requires forall x :: P(x) && Q(x)
ensures Q(0)

{
}

A: Only if it’s smart enough to pick the right trigger

GOMPUTER SCIENCE & ENGINEERING

Imagine you are the solver

requires forall x :: P(x) && Q(x)

| wonder if P(0) is a useful fact... | wonder if Q(0) iS a useful fact...

I Wond%ri}c (1 asueful Fa?

{0 cfattact...
71.‘ 5 fl]; ;Ep it
'.! :‘5 1 (L., .

T
23
Q05

- |- |-
- - = 0
uw uw uw whQ
A ar s are e n

. N
et e > 3
Bsbr. IO ;.;?‘ﬂ;?}%?-gn‘ﬁi Ik
i tCt 4 .’5 ";;;' ﬂ%' SENGLE : %,
Bhe I WoNdREGTTERR RS ARRETOl e
e 5:!? tCt I Wg . s 12%1:' ! 3
it "EF th Alye . S A '-u?l%' 122
¢ ,E;, tct | Waie J‘ ‘ :
et | AN

c
v
=0

COMPUTER SCIENCE & ENGINEERING

Completeness vs Soundness

* Proving a program correct is undecidable
* j.e.itis impossible to write a program that always correctly answers the
question: is this program correct
* Side note:
* Logicomix
* Veritasium

[INCOMPLETENESS

* Provers embrace incompleteness while guarding soundness
* Incompleteness: the prover may say “no” to a correct program
* Soundness: the prover will never say “yes” to an incorrect program

02/07/2025 EECS498-003 18

COMPUTER SCIENCE & ENGINEERING
Triggers

* What is a trigger?

A syntactic pattern involving quantified variables

A heuristic to let the solver know when to instantiate the quantifier

COMPUTER SCIENCE & ENGINEERING
Recap of Chapter 2: Specification

Specifications
are trusted!

GOMPUTER SCIENCE & ENGINEERING

Recap of Chapter 3: State machines

* Express the behavior of a system

* Main components: Constants/Variables, Init() and Next() predicates

* Advanced usage: Jay Normal Form

GOMPUTER SCIENCE & ENGINEERING

Recap of Chapter 4: Inductive invariants

All states
: >

Safe states
Inductive
invariant

Reachable (property P holds)

states

GOMPUTER SCIENCE & ENGINEERING

Good luck with the midterm!

	EECS498-003 Formal Verification of Systems Software
	Modeling distributed systems
	Modeling the network - Ordering
	Modeling the network - Duplication
	Modeling the network - Integrity
	Modeling the network
	Slide 7
	Slide 8
	Slide 9
	Trusted vs proven
	: the systems specification sandwich
	Midterm logistics
	Administrivia
	Recap of Chapters 1-4
	Recap of Chapter 1: Dafny mechanics
	Triggers
	Imagine you are the solver
	Completeness vs Soundness
	Triggers (2)
	Recap of Chapter 2: Specification
	Recap of Chapter 3: State machines
	Recap of Chapter 4: Inductive invariants
	Good luck with the midterm!

