
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

02/07/2025 EECS498-003 2

Leader election

id
35

id
23

id
40

id
86

id
11

-1

-1

-1-1

-1

VSCode transition

02/07/2025 EECS498-003 3

id
35

id
23

id
40

id
86

id
11

-1

-1

-1-1

-1 23

86

40

35

86

40

Leader election

02/07/2025 EECS498-003 4

id
35

id
23

id
40

id
86

id
11

-1

-1

-1-1

-1 23

40

35

35

86

Leader election

02/07/2025 EECS498-003 5

Administrivia

• Midterm exam on Thursday, 10/17
• 6-8pm
• No lecture that day
• Sample exams coming soon™

• Closed books
• Allowed one double-sided cheat-sheet, 10pt minimum

• Covers everything up to Chapter 4 (i.e. excluding distributed systems)

• Problem set 2 (Chapters 3 and 4) due today!
• Problem set 3 (Chapter 5) will be released tomorrow

02/07/2025 EECS498-003 6

Introduction to distributed systems

What is a distributed system?

A collection of distinct processes that:
• are spatially separated
• communicate with one another by exchanging messages
• have non-negligible communication delay
• do not share fate
• have separate, imperfect, unsynchronized physical clocks

02/07/2025 EECS498-003 7

id
23

id
40

-1

-1

Leader election
...as a distributed, asynchronous system

02/07/2025 EECS498-003 8

Other examples of distributed systems

Web server

02/07/2025 EECS498-003 9

A distributed system

Network

02/07/2025 EECS498-003 10

Modeling distributed systems

A distributed system is composed of multiple hosts

Distributed system

Host Host

Host Host

Distributed System: attempt #1
module DistributedSystem {

 datatype Variables =

 Variables(hosts:seq<Host.Variables>)

 predicate Next (v:Variables, v’:Variables, hostid: nat)
{

 && Host.Next(v.hosts[hostid],v'.hosts[hostid]))

 && forall otherHost:nat | otherHost != hostid ::

 v’.hosts[otherHost] == v.hosts[otherHost]

 }

}

02/07/2025 EECS498-003 11

New Dafny syntax: modules

Modules allow us to break up our code into multiple parts

module A {

predicate MyPredicate() { ... }

}

module B {

import A

predicate MySecondPredicate() { A.MyPredicate() }

}

02/07/2025 EECS498-003 12

Defining the network

Network module

module Network {

 datatype Variables =

 Variables(sentMsgs: set<Message>)

 predicate Next(v, v’, msgOps:MessageOps) {

 // can only receive messages that have been sent

 && (msgOps.recv.Some? ==> msgOps.recv.value in
v.sentMsgs)

 // Record the sent message, if there was one

 && v'.sentMsgs ==

 v.sentMsgs + if msgOps.send.None? then {}

 else {msgOps.send.value}

 }

}

Distributed system

Host Host

Host Host

Network

datatype Option<T> = Some(value:T) | None
datatype MessageOps = MessageOps(

recv:Option<Message>,
send:Option<Message>)

02/07/2025 EECS498-003 13

A distributed system is composed of multiple hosts and a network
Distributed system: attempt #2
module DistributedSystem {
 datatype Variables =
 Variables(hosts:seq<Host.Variables>,
 network: Network.Variables)

 predicate HostAction(v, v’, hostid, msgOps) {
 && Host.Next(v.hosts[hostid],v'.hosts[hostid],msgOps))
 && forall otherHost:nat | otherHost != hostid ::
 v’.hosts[otherHost] == v.hosts[otherHost]
 }

 predicate Next(v, v’, hostid, msgOps: MessageOps) {
 && HostAction(v, v’, hostid, msgOps)
 && Network.Next(v, v’, msgOps)
 }
}

Distributed system

Host Host

Host Host

Network

Binding variable

02/07/2025 EECS498-003 14

A distributed system is composed of multiple hosts, a network and clocks
Distributed system: attempt #3
module DistributedSystem {

 datatype Variables =

 Variables(hosts:seq<Host.Variables>,

 network: Network.Variables,

 time: Time.Variables)

 predicate Next(v, v’, hostid, msgOps: MessageOps,
clk:Time) {

 || (&& HostAction(v, v’, hostid, msgOps, clk)

 && Network.Next(v, v’, msgOps)

 && Time.Read(v.time, clk))

 || (&& Time.Advance(v.time, v’.time)

 && v’.hosts == v.hosts

 && v’.network == v.network)

 }

}

Distributed system

Host Host

Host Host

Network

Time Binding variable

02/07/2025 EECS498-003 15

Administrivia

• Problem set 3 (Chapter 5) will be released later today
• Start looking for partners for Project 1 (released after PS3)
• Midterm evaluations are up

• Please provide feedback!
• Note the additional questions

02/07/2025 EECS498-003 16

Atomic Commit (Problem Set 3)

-Do you take each other?
 -I do.
 -I do.
-I now pronounce you
atomically committed.

02/07/2025 EECS498-003 17

Atomic Commit: the objective

Preserve data consistency for distributed transactions

 Example: book a hotel and flight on Expedia

02/07/2025 EECS498-003 18

Atomic Commit: the setup

• One coordinator
• A set of participants

• Allowed to be empty in our model

• Every participant has an “input” value, called vote/preference

• Every participant/coordinator has an “output” value, called decision

• We are ignoring the possibility of failures

02/07/2025 EECS498-003 19

Atomic Commit: the spec (simplified to ignore failures)

• AC-1: All processes that reach a decision reach the same one
• AC-3: The Commit decision can only be reached if all processes vote Yes
• AC-4: If there are no failures and all processes vote Yes, then the

decision must be Commit

AC-2 and AC-5 ignored

02/07/2025 EECS498-003 20

Two Phase Commit (2PC)

1. sends VOTE-REQ message to all participants

2. sends to coordinator
 if == No
 then := Abort

3. Wait for all votes to come in
 If all votes are Yes then

 := Commit
 Send Commit message to all
 else

 := Abort
 Send Abort message to all who voted Yes

4. If received Commit then
 := Commit
 else
 := Abort

02/07/2025 EECS498-003 21

A “distributed” system
module DistributedSystem {

 datatype Variables =

 Variables(fs: FileSystem.Variables,

 disk: Disk.Variables)

 predicate Next(v, v’) {

 || (exists io ::

 && FileSystem.Next(v.fs, v’.fs, io)

 && Disk.Next(v.disk, v’.disk, io)

 || (// Crash!

 && FileSystem.Init(v’.fs)

 && v’.disk == v.disk

)

 }

}

Distributed system

File system
(in-memory state Disk

Binding variable

02/07/2025 EECS498-003 22

Trusted vs proven

Distributed system

Host Host

Host Host

Network

Distributed system

File system
(in-memory state Disk

Time

Network won’t
make up packets

Network might
reorder packets

Time only moves
forward

Disk won’t forget writes
it acknowledged

Disk might reorder
concurrent writes

Hosts cannot communicate
except through the network

Time can advance
between any host steps

File system (kernel)
can crash

02/07/2025 EECS498-003 23

 : the systems specification
sandwich

image: pixabay

trusted environment assumptions

trusted application spec

proof

proof
protocol

code

	EECS498-003 Formal Verification of Systems Software
	Leader election
	Leader election (2)
	Leader election (3)
	Administrivia
	Introduction to distributed systems
	Leader election (4)
	Other examples of distributed systems
	A distributed system
	Modeling distributed systems
	New Dafny syntax: modules
	Slide 12
	Slide 13
	Slide 14
	Administrivia (2)
	Atomic Commit (Problem Set 3)
	Atomic Commit: the objective
	Atomic Commit: the setup
	Atomic Commit: the spec (simplified to ignore failures)
	Two Phase Commit (2PC)
	Slide 21
	Trusted vs proven
	: the systems specification sandwich

