GOMPUTER SCIENCE & ENGINEERING

EECS498-003
Formal Verification of
Systems Software

Material and slides created by

Jon Howell and Manos Kapritsos

Leader election

02/07/2025

EECS498-003

VSCode transition

2

Leader election

02/07/2025 EECS498-003 3

COMPUTER SCIENCE & ENGINEERING

02/07/2025 EECS498-003 4

'COMPUTER SCIENCE & ENGINEERING
Administrivia

* Midterm exam on Thursday, 10/17
* 6-8pm
* No lecture that day
* Sample exams coming soon™

* Closed books
* Allowed one double-sided cheat-sheet, 10pt minimum

* Covers everything up to Chapter 4 (i.e. excluding distributed systems)

* Problem set 2 (Chapters 3 and 4) due today!
* Problem set 3 (Chapter 5) will be released tomorrow

COMPUTER SCIENCE & ENGINEERING
Introduction to distributed systems

What is a distributed system?

A collection of distinct processes that:

* are spatially separated

* communicate with one another by exchanging messages
* have non-negligible communication delay

* do not share fate

* have separate, imperfect, unsynchronized physical clocks

COMPUTER SCIENCE & ENGINEERING

Leader election

...as a distributed, asynchronous system

02/07/2025 EECS498-003 7

GOMPUTER SCIENCE & ENGINEERING

Other examples of distributed systems

/\
_

Web server

. | map shuffle reduce
input split DOG, | .| DOG,|I
CAT,| DOG, | BB
/ DOG CATRAT |—| a7 : \ final
CAR,| result
< > DOG CAT RAT CAR, | CAR,| > CAR3 DOG?2
CAR CAR RAT " CARCARRAT |—| CARI CAR,| T s
DOG CAR CAT RAT, | :
; CAT2
CAT| Tl ram2
\ DOG, | CAT,| L2 '
DOG CARCAT |—— (Car| : /
CAT,|
. RAT,|
RAT EAT2

A distributed system

0000000000

()

N

)

N

§
E/

COMPUTER SCIENCE & ENGINEERING

()

)

§

()

-
Q/
—

COMPUTER SCIENCE & ENGINEERING
Modeling distributed systems

A distributed system is composed of multiple hosts

Distributed system Distributed System: attempt #1
module DistributedSystem {
Host Host datatype Variables =
Variables(hosts:seq<Host.Variables>)

predicate Next (v:Variables, v’:Variables, hostid: nat)

{
Host Host && Host.Next(v.hosts[hostid],v'.hosts[hostid]))
&& forall otherHost:nat | otherHost != hostid ::
v'.hosts[otherHost] == v.hosts[otherHost]
}

GOMPUTER SCIENCE & ENGINEERING

New Dafny syntax: modules

Modules allow us to break up our code into multiple parts

module A {
predicate MyPredicate() { ... }

}

module B {
import A
predicate MySecondPredicate() { A.MyPredicate() }

Deﬁning the network datatype Option<T> = Some(value:T) | None

COMPUTER SCIENCE & ENGINEERING

datatype MessageOps = MessageOps(
recv:0ption<Message>,
Network module send:0ption<Message>)

module Network {
datatype Variables =
Variables(sentMsgs: set<Message>)

Distributed system

Host

Network

predicate Next(v, v’', msgOps:MessageOps) {
Host // can only receive messages that have been sent

Host

&& (msgOps.recv.Some? ==> msgOps.recv.value in
v.sentMsgs)

// Record the sent message, if there was one

Host && v'.sentMsgs ==

v.sentMsgs + if msgOps.send.None? then {}

else {msgOps.send.value}

GOMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts and a network

Distributed system: attempt #2
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,
network: Network.Variables)

Distributed system

Host

predicate HostAction(v, v’, hostid, msgOps) {

Network

&S Host.Next(v.hosts[hostid],v'.hosts[hostid],msgOps))
Host & forall otherHost:nat | otherHost != hostid ::

Host

v'.hosts[otherHost] == v.hosts[otherHost]

predicate Next(v, v’, hostid, msgOps: MessageOps) {

Host
&& HostAction(v, v’, hostid, msgOps)

&& Network.Next(v, v’, mqukil__::>>lmndmgvaname

}
}

GOMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts, a network and clocks

Distributed system: attempt #3
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,

network: Network.Variables,

Distributed system time: Time.Variables)

Host Host Eredicate Next(v, v’', hostid, msgOps: MessageOps,
clk:Time) {
Network _ _
|| (&& HostAction(v, v’', hostid, msgOpg, clk)
Time && N?twork.Next(Y, V', msg0ps) Binding variable
&& Time.Read(v.time, clk))

Host Host

|| (&& Time.Advance(v.time, v’'.time)
&& v’ .hosts == v.hosts

&& v’ .network == v.network)

'COMPUTER SCIENCE & ENGINEERING
Administrivia

* Problem set 3 (Chapter 5) will be released later today

* Start looking for partners for Project 1 (released after PS3)

* Midterm evaluations are up
* Please provide feedback!
* Note the additional questions

GOMPUTER SCIENCE & ENGINEERING

Atomic Commit (Problem Set 3)

-Do you take each other?
-| do.
-| do.
-l now pronounce you
atomically committed.

GOMPUTER SCIENCE & ENGINEERING

Atomic Commit: the objective

Preserve data consistency for distributed transactions

Example: book a hotel and flight on Expedia

COMPUTER SCIENCE & ENGINEERING
Atomic Commit: the setup

* One coordinator

* A set of participants
* Allowed to be empty in our model

* Every participant has an “input” value, called vote/preference
vote; € {Yes, No}

* Every participant/coordinator has an “output” value, called decision
decision; € {Commit, Abort}

* We are ignoring the possibility of failures

'COMPUTER SCIENCE & ENGINEERING
Atomic Commit: the SPEC (simplified to ignore failures)

* AC-1: All processes that reach a decision reach the same one
* AC-3: The Commit decision can only be reached if all processes vote Yes

* AC-4: If all processes vote Yes, then the
decision must be Commit

AC-2 and AC-5 ignored

COMPUTER SCIENCE & ENGINEERING
Two Phase Commit (2PC)

Particpant p

1. sends VOTE-REQ message to all participants

\

3. Wait for all votes to come in /
If all votes are Yes then

decision,. := Commit
Send Commit message to all

else \ 4. If received Commit then

decision,:= Abort cretvee -on :
Send Abort message to all who voted Yes elseecwwnz = Commit

decision; := Abort

2. sends vote; to coordinator
if vote; == No
then deciston; = Abort

02/07/2025 EECS498-003 20

A “distributed” system

Distributed system

File system
(in-memory state

Disk

module DistributedSystem {

datatype Variables

Variables(fs: FileSystem.Variables,
disk: Disk.Variables)

predicate Next(v, v’) {
(exists 10 ::
& FileSystem.Next(v.fs, v’'.fs, 1io0)

&& Disk.Next (v.disk, v’.disk, «io) Binding variable
(// Crash!
&& FileSystem.Init(v'.fs)

)

& v’ .disk

v.disk

COMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERING

Trusted vs proven

Time can advance File system (kernel)
between any host steps can crash

Distributed system Distributed system

Network
Network might / - Disk
reorder packets i \

Disk might reorder

concurrent writes
|

02/07/2025 EECS498-003 22

COMPUTER SCIENCE & ENGINEERING
srFaFEsTeNe: the systems specification
SAaNAWwWIC

usted application spec

N
trusted environment assumptions

image: pixabay

02/07/2025 EECS498-003 23

	EECS498-003 Formal Verification of Systems Software
	Leader election
	Leader election (2)
	Leader election (3)
	Administrivia
	Introduction to distributed systems
	Leader election (4)
	Other examples of distributed systems
	A distributed system
	Modeling distributed systems
	New Dafny syntax: modules
	Slide 12
	Slide 13
	Slide 14
	Administrivia (2)
	Atomic Commit (Problem Set 3)
	Atomic Commit: the objective
	Atomic Commit: the setup
	Atomic Commit: the spec (simplified to ignore failures)
	Two Phase Commit (2PC)
	Slide 21
	Trusted vs proven
	: the systems specification sandwich

