
EECS498-003
Formal Verification of

Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

EECS498-003 2

About me

Manos Kapritsos (manosk@umich.edu)
Areas of research: Formal Verification, Distributed Systems

29+1 years old (but I am not 30)

Disclaimer
Any resemblance to purple-looking super
villains, living or dead, is purely coincidental

8/27/24

mailto:manosk@umich.edu)

EECS498-003 3

About me

8/27/24

EECS498-003 4

About you and me

• I love teaching and interacting with my students

• I want to get to know you all by name

8/27/24

EECS498-003 58/27/24

It’s picture time!
1. Give your phone to someone close to you
2. Pose for the picture
3. Go to verification.eecs.umich.edu/self.php

(login may be required)
4. Upload your picture!
5. (optional) update your preferred name

EECS498-003 6

About you and me

• I love teaching and interacting with my students

• I want to get to know you all by name

• I’m here to help. Come to me with any question!
• course-related: office hours

• Thursday, 11am-12pm, BBB 4824, starting next week
• Life, The University, and Everything: any time

8/27/24

EECS498-003 7

If you need more help...

Our GSI, Keshav Singh, is here to help

A Jedi Master in Formal Verification
Office hours: Monday 4:30-5:30, Learning Center Table #1

8/27/24

EECS498-003 8

The unseen hero

Jon Howell, VMWare Research

Co-designer of the material in this course

8/27/24

“Bugs, unit tests, gdb. The dark side are they.”

“Testing not make one great.”

EECS498-003 9

Agenda for Today

• Why learn formal verification?

• Course syllabus and logistics

• What is formal verification?
• (and other, related approaches)

• Getting started with Dafny

8/27/24

EECS498-003 10

Why learn formal verification?

EECS280/281

EECS482

High-level programming

OS-level programming

EECS491 Distributed programming

We have taught you how to write and test programs

8/27/24

EECS498-003 11

Real-world systems are too complex to test

[Mickens 2013]

8/27/24

EECS498-003 12

Despite tremendous effort...

BUGS

“not one of the properties claimed invariant in
[PODC] is actually invariantly true of it.”

[Zave 2015]

8/27/24

EECS498-003 13

Is it possible to write code that is
completely bug-free?

Formal verification is as close as we can get

8/27/24

EECS498-003 14

March 25, 2015

(or how I became a believer)

• One day before the deadline of SOSP’15, we had not yet run our code

• ...and yet our code ran correctly the first time we ran it!
• (and every time afterwards)

8/27/24

EECS498-003 15

Verification in the real world

• Verification is an increasingly popular approach

• Many companies have picked it up in the last few years:
• Microsoft, Amazon, Facebook
• NASA, Boeing
• Many blockchain/fintech companies

8/27/24

EECS498-003 16

How will you benefit from this class?

• It will make you a better programmer
• Whether you end up writing verified code or not

• You will learn to specify your code
• To express your intent clearly and unambiguously
• Just like design docs, but better

• You will learn important concepts
• E.g. inductive invariants, refinement

• Get ahead of the curve
• Learn an emerging skill

8/27/24

EECS498-003 17

Testimonial from last semester
“I had a ~30 minute coding interview (in Python) and I didn't have a single
runtime or compilation [error] after writing multiple class definitions
~100 lines of code. I have become a better programmer and approach
problems in a more structured way because of this class and it was a large
reason I got the position (as my interviewer has since told me).”

Anonymous student, Winter 2024

8/27/24

EECS498-003 18

Objectives of this class

• Understand the fundamentals of formal verification
• Learn how they apply in a (distributed) systems context
• Get hands-on experience with proving systems correct
• Become familiar with a practical verification language

8/27/24

EECS498-003 19

Prerequisites

• Experience with programming
• i.e. EECS281

• I will explain the mechanics of any distributed systems in the class
for those of you that haven’t taken EECS491

• No verification experience required

If anything is unclear, do not hesitate to ask

8/27/24

EECS498-003 20

About this class

• Disclaimer: this class is not formally verified!

• This is the third time I am teaching this class
• …and the first class ever on this material

• There is no textbook (anywhere!)
• Jon and I are currently writing one (based in part on the experience from this class)

8/27/24

EECS498-003 21

Class material

• Class webpage
• https://verification.eecs.umich.edu

• Syllabus, lecture slides, problem sets and projects will be posted on
the class webpage

• Subscribe yourself to Piazza
• Announcements and class discussion

8/27/24

https://verification.eecs.umich.edu/

EECS498-003 22

Enrollment

• We should be able to accommodate up to 50 people

• If you cannot enroll in the class for some reason, come talk to me

8/27/24

EECS498-003 23

Lectures

• Lectures will be held in person in DOW 2166

• Recordings will be posted at:
https://leccap.engin.umich.edu/leccap/site/z15i8cyn7j0y6wsp2vm
• (link is also on course web page and Piazza)

• I will be posting slides of each lecture (shortly) before the lecture, in
case you want to keep notes directly on the slides

8/27/24

https://leccap.engin.umich.edu/leccap/site/z15i8cyn7j0y6wsp2vm

EECS498-003 24

Lectures schedule

• Material is divided into six chapters, plus some advanced topics
• Chapters 1-4 (before midterm) cover the basic concepts of verification

• Basic verification and Dafny mechanics
• Specification
• Centralized state machines
• Proving properties and inductive invariants

• Chapters 5-6 (after midterm) cover distributed systems and refinement
proofs
• Distributed state machines
• Refinement
• Advanced topics

8/27/24

EECS498-003 25

Problem sets and projects

• There are four (programming) problem sets and two projects
• Problem sets will be done individually
• Projects will be done in groups of 1-2 students

• All deliverables will be submitted via the autograder.io website
• They use a combination of auto-grading and hand-grading

8/27/24

EECS498-003 26

Class workload

var difficulty

if student.degree == undergraduate {

difficulty := “light to medium”

} else {

difficulty := “heavy”

}

print “This class is “+difficulty

8/27/24

EECS498-003 27

Policies

• Submission
• Three submissions per day to the autograder
• Due at midnight on deadline
• Three late days throughout the semester

• Collaboration
• Okay to clarify problem or discuss Dafny syntax
• Not okay to discuss solutions

8/27/24

EECS498-003 28

Exams

• Midterm: October 17, 6-8pm
• Final: December 18, 8-10am (sorry, the registrar sets this time!)

• No makeup exams
• Except in dire circumstances
• Make sure you schedule your interviews appropriately

8/27/24

EECS498-003 29

Grading breakdown

• Problem sets: 26%
• PS1: 8% (Chapters 1 and 2)
• PS2: 6% (Chapters 3 and 4)
• PS3: 6% (Chapter 5)
• PS4: 6% (Chapter 6)

• Projects: 30%
• Project 1: 15%
• Project 2: 15%

• Midterm exam: 22%
• Final exam: 22%

8/27/24

EECS498-003 30

What is formal verification?

• Step 1: Specify the correctness of the system formally
• Step 2: Prove that the implementation conforms to the spec

If the spec expresses your correctness property,
then your system is correct, subject to any
assumptions you have made during your proof

8/27/24

EECS498-003 31

Other approaches

Testing: run the system with a large and/or representative set of inputs to
determine if it behaves correctly
• Quality depends on acumen of test designer
• Infeasible to achieve complete coverage for complex systems

Model checking: Model the system and ensure all possible states are safe
• Correctness depends on how accurate the model is
• Does not scale well to complex systems, especially those with infinite

state spaces, like distributed systems

8/27/24

EECS498-003 32

Statically checking for correctness

What we want is a “static correctness check”, akin to a static type check

You write your code normally, but if you introduce bugs the checker will
tell you

When the checker complains, you have to spend some time to convince
it that your code is right---if indeed it is

8/27/24

EECS498-003 33

Using a Theorem Prover

Express the execution of the system and its correctness as a mathematical
formula (done automatically by the language)

Give the formula to a theorem prover, effectively asking:
”If the system behaves this way, is it possible for its correctness to be
violated?”

A negative answer means the system is proven to be correct
A positive answer means there is still work to do, either:
• the system is indeed incorrect
• the proof is incomplete

8/27/24

EECS498-003 34

 Using Dafny

• We will be using Dafny as our verification language
• Dafny is an imperative language designed with formal verification in mind
• ...and plenty of functional language features

• Dafny uses an SMT solver (Z3) to automate verification to a large degree
• ...but it needs our help sometimes

• Most of the high-level skills are transferrable...
• ...but some are specific to Dafny and/or automation

8/27/24

EECS498-003 35

 Getting started with Dafny

• In the lab on Friday, Keshav will go over instructions for installing Dafny 4.4

• The simplest way to use Dafny is via the Visual Studio plugin
• Gives you a nice interface

• You can also invoke Dafny on the command line:
• dafny myFile.dfy

8/27/24

EECS498-003 36

Dafny in Docker

• We provide you with a Docker container that has Dafny pre-installed
• Makes it easy to get started
• Ensures everyone is using the same Dafny version as the autograder
• Not highly recommended for the bulk of your development

• Download and run it like this:
• docker pull ekaprits/eecs498-009:latest
• docker container run --mount
src=$PWD,target=/home/autograder/working_dir,type=bind,readonly -t -i
ekaprits/eecs498-009:latest

• CAEN machines have some partial support for Docker
• If you don’t have access to a machine that can run Docker, contact me ASAP

8/27/24

EECS498-003 37

Things to do

• Browse the course web page

• Subscribe to Piazza

• Install Dafny 4.4 (during lab)
• If that doesn’t work: install Docker, pull image, run image

8/27/24

	EECS498-003 Formal Verification of Systems Software
	About me
	About me (2)
	About you and me
	Slide 5
	About you and me (2)
	If you need more help...
	The unseen hero
	Agenda for Today
	Why learn formal verification?
	Real-world systems are too complex to test
	Despite tremendous effort...
	Slide 13
	March 25, 2015
	Verification in the real world
	How will you benefit from this class?
	Testimonial from last semester
	Objectives of this class
	Prerequisites
	About this class
	Class material
	Enrollment
	Lectures
	Lectures schedule
	Problem sets and projects
	Class workload
	Policies
	Exams
	Grading breakdown
	What is formal verification?
	Other approaches
	Statically checking for correctness
	Using a Theorem Prover
	Using Dafny
	Getting started with Dafny
	Dafny in Docker
	Things to do

