
EECS498-008
Formal Verification

of Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

EECS498-008

A state is an assignment of
values to variables

The state space is the set of possible assignments.

2

datatype Card = Shelf | Patron(name:
string)
datatype Book = Book(title: string)
type Variables = map<Book, Card>

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Jon
Snow Crash: Jon

The Martian: Manos
Snow Crash: Jon

9/21/22

A state machine definition
predicate Init(v: Variables) {
 forall book | book in v :: v[book] == Shelf
}
predicate CheckOut(v : Variables, v’ : Variables, book: Book, name:
string) {
 && book in v
 && v[book] == Shelf
 && (forall book | book in v :: v[book] != Patron(name))
 && v’ == v[book := Patron(name)]
}
predicate CheckIn(v : Variables, v’ : Variables, book: Book, name: string)
{
 && book in v
 && v[book] == Patron(name)
 && v’ == v[book := Shelf]
}
predicate Next(v: Variables, v’: Variables) {
 || (exists book, name :: CheckOut(v, v’, book, name))
 || (exists book, name :: CheckIn(v, v’, book, name))
} 3

datatype Card = Shelf | Patron(name:
string)
datatype Book = Book(title: string)
type Variables= map<Book, Card>

Nondeterministic
definition

enabling condition

“update”

A behavior is the set of all possible
executions

predicate CheckOut(v, v’, book, name) {
 && book in v
 && v[book] == Shelf
 && (forall book | book in v :: v[book] !=
Patron(name))
 && v’ == v[book := Patron(name)]
}
predicate CheckIn(v, v’, book, name) {
 && book in v
 && v[book] == Patron(name)
 && v’ == v[book := Shelf]
}

4

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Rob

check out ???

State machine strengths
• Abstraction
• States can be abstract

• Model an infinite map instead of an efficient pivot table
• Next predicate is nondeterministic:

• Implementation may only select some of the choices
• Can model Murphy’s law (e.g. crash tolerance) or an adversary

5

State machine strengths
• Abstraction
• Asynchrony
• Each step of a state machine is conceptually atomic
• Interleaved steps capture asynchrony: threads, host processes, adversaries
• Designer decides how precisely to model interleaving; can refine/reduce

6

 Distributed System (environment assumption)

State machine strengths
• Abstraction
• Asynchrony
• Environment
• Model a proposed program with one state machine (verified)
• Model (adversarial) environment with another (trusted)
• Compound state machine models their interactions (trusted)

7

 System (environment assumption)

Filesystem
(program to verify)

Disk
(environment
assumption)

Host
(program to verify)

Network
(environment
assumption)

0 1 2 3 657 658…

Chapter 4: Proving properties
Expressing a system as a state machine allows us to prove that it has
certain properties
• We will focus on safety properties
• i.e. properties that hold throughout the execution

Basic tool: induction

• Show that the property holds on state 0
• Show that if the property holds on state k, it must hold on state k+1

8

0 1 2 3 657 658

Let’s prove a safety invariant!
predicate Safety(v:Variables) {
 true // TBD
}

lemma SafetyProof()
 ensures forall v :: Init(v) ==> Safety(v)
 ensures forall v, v' :: Safety(v) && Next(v, v') ==> Safety(v')
{
}

9

Base case

Inductive Step

Let’s prove a safety invariant!

10

Interactive proof development in editor
Bisection debugging,
case analysis,
existential instantiation

 Jay Normal Form

As you begin writing more interesting
specs, proofs will be nontrivial.

Pull all the nondeterminism into one
place, and get a receipt.

11
image: flickr/afagen CC-by-nc-sa

Jay Normal Form
datatype Step =
 | Action1Step(<parameters>)
 | Action2Step(<parameters>)
 ...

predicate NextStep(v: Variables, v’: Variables, step:Step)
{
 match step
 case Action1Step(<parameters>) => Action1(v, v’, <parameters>)
 case Action2Step(<parameters>) => Action2(v, v’, <parameters>)
 ...
}
predicate Next(v: Variables, v’: Variables)
{
 exists step :: NextStep(v, v’, step)
}

12

	EECS498-008 Formal Verification of Systems Software
	A state is an assignment of values to variables
	A state machine definition
	A behavior is the set of all possible executions
	State machine strengths
	State machine strengths (2)
	State machine strengths (3)
	Chapter 4: Proving properties
	Let’s prove a safety invariant!
	Let’s prove a safety invariant! (2)
	Jay Normal Form
	Jay Normal Form

