
EECS498-008
Formal Verification

of Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

EECS498-008 2

Some new Dafny syntax

9/19/22

Datatype member functions

datatype Pet = Dog | Cat | Ant | Spider {
 function CountLegs() : int {
 match this
 case Dog => 4
 case Cat => 4
 case Ant => 6
 case Spider => 8
 }
}

function ShoesForTwo(pet: Pet) : int {
 2 * pet.CountLegs()
}

EECS498-008 3

Calc statements

assert a == b;
assert b == c;
assert c == d;

calc {
 a;
 b;
 c;
 d;
}

Some new Dafny syntax

9/19/22

EECS498-008 4

Calc statements

assert a == b;
assert b == c;
assert c == d;

calc {
 a;
 { MyUsefulLemma(a,b); }
 b;
 c;
 d;
}

Some new Dafny syntax

9/19/22

EECS498-008 5

Calc statements

assert a == b;
assert b == c;
assert c == d;

calc ==> {
 a;
 { MyUsefulLemma(a,b); }
 b;
 c;
 d;
}

Some new Dafny syntax

9/19/22

EECS498-008 6

Choose operator

assert 1 % 7 == 1;
assert exists x :: x % 7 == 1;
var x :| x % 7 == 1;

Choose x such that...

Some new Dafny syntax

9/19/22

EECS498-008 7

Remember that Problem Set 1 is due this Friday

I’m still missing some of your pictures. Please send me your picture (
manosk@umich.edu) with the Subject “EECS498-008 picture”

Administrivia

9/19/22

mailto:manosk@umich.edu)

EECS498-008

Chapter 3: Building state
machines
A state is an assignment of values to variables

An action is a transition from one state to another

An execution is a sequence of states

We will capture executions with state machines

8

x=1
y=1

x=1
y=2

9/19/22

EECS498-008

Building state machines
A state is an assignment of values to variables

An action is a transition from one state to another

An execution is a sequence of states

We will capture executions with state machines

9

A B

A B C D

9/19/22

The Switch state machine

10

off on

Activate

Deactivate, Toggle

Activate, Toggle

Deactivate

Activate Activate Toggle Toggle

off on on off on

EECS498-008

The Switch state machine
predicate Activate(v:Variables, v':Variables) {
 v'.switch == On
}
predicate Deactivate(v:Variables, v':Variables)
{
 v'.switch == Off
}
predicate Toggle(v:Variables, v':Variables) {
 v'.switch == if v.switch.On? then Off else
On
}
predicate Next(v:Variables, v':Variables) {
 || Activate(v, v')
 || Deactivate(v, v')
 || Toggle(v, v')
}

11

off on

Activate

Deactivate,
Toggle

Activate,
Toggle

Deactivate

datatype SwitchState = On | Off
datatype Variables =

Variables(switch:SwitchState)
predicate Init(v:Variables) {
 v.switch == Off
}

9/19/22

The Game of Nim

12

11 7

Play(3)

10

Play(1)

5

Play(2)

1

Play(4)

EECS498-008

The Nim state machine
datatype Variables = Variables(tokens:nat)
predicate Init(v:Variables) {
 v.tokens > 0
}

predicate Play(v:Variables, v':Variables, take:nat) {
 && 1 <= take <= 4
 && take <= v.tokens
 && v'.tokens == v.tokens - take
}

predicate Next(v:Variables, v':Variables)
{
 exists take :: Play(v, v', take)
}

13

enabling condition
“update”

9/19/22

14

11 7

Play(3)

10

Play(1)

5

Play(2)

1

Play(4)

11 10 9 8 7

0

11 10 11 8 7

!Init()

!Next()

A state is an assignment of values
to variables

The state space is the set of possible assignments.

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Jon
Snow Crash: Jon

The Martian: Manos
Snow Crash: Jon

datatype Card = Shelf | Patron(name:
string)
datatype Book = Book(title: string)
type Library = map<Book, Card>

15

An execution is an infinite sequence of states

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Manos
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Jon

The Martian: Rob
Snow Crash: Jon

check out check out check in check out

The Martian: Shelf
Snow Crash: Shelf

The Martian: Jon
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

The Martian: Rob
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

check out check in check out check in

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Rob

check out ???

16

A behavior is the set of all possible executions

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Manos
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Jon

The Martian: Rob
Snow Crash: Jon

check out check out check in check out

The Martian: Shelf
Snow Crash: Shelf

The Martian: Jon
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

The Martian: Rob
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

check out check in check out check in

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Rob

check out ???

17

How should we define a behavior?
With a program?

Its variables define its state space
Its executions define its behavior

Weaknesses:
● concreteness
● nondeterminism
● asynchrony
● environment

18

How should we define a behavior?
With a state machine

Its type defines its state space
Its initial states and transitions define its behavior

19

predicate Init(v: Library) {
 forall book | book in v :: v[book] == Shelf
}
predicate CheckOut(v : Library, v’ : Library, book: Book, name: string) {
 && book in v
 && v[book] == Shelf
 && (forall book | book in v :: v[book] != Patron(name))
 && v’ == v[book := Patron(name)]
}
predicate CheckIn(v : Library, v’ : Library, book: Book, name: string) {
 && book in v
 && v[book] == Patron(name)
 && v’ == v[book := Shelf]
}
predicate Next(v: Library, v’: Library) {
 || (exists book, name :: CheckOut(v, v’, book, name))
 || (exists book, name :: CheckIn(v, v’, book, name))
}

A state machine definition

Nondeterministic
definition

enabling condition

“update”

20

datatype Card = Shelf | Patron(name:
string)
datatype Book = Book(title: string)
type Library = map<Book, Card>

A behavior is the set of all possible executions

21

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Rob

check out ???

predicate CheckOut(v, v’, book, name) {
 && book in v
 && v[book] == Shelf
 && (forall book | book in v :: v[book] !=
Patron(name))
 && v’ == v[book := Patron(name)]
}
predicate CheckIn(v, v’, book, name) {
 && book in v
 && v[book] == Patron(name)
 && v’ == v[book := Shelf]
}

State machine strengths
● Abstraction

○ States can be abstract
■ Model an infinite map instead of an efficient pivot table

○ Next predicate is nondeterministic:
■ Implementation may only select some of the choices
■ Can model Murphy’s law (e.g. crash tolerance) or an adversary

23

State machine strengths
● Abstraction
● Asynchrony

○ Each step of a state machine is conceptually atomic
○ Interleaved steps capture asynchrony: threads, host processes, adversaries
○ Designer decides how precisely to model interleaving; can refine/reduce

24

● Abstraction
● Asynchrony
● Environment

○ Model a proposed program with one state machine (verified)
○ Model adversarial environment with another (trusted)
○ Compound state machine models their interactions (trusted)

 System (environment assumption)

State machine strengths

Filesystem
(program to verify)

Disk
(environment
assumption)

25

● Abstraction
● Asynchrony
● Environment

○ Model a proposed program with one state machine (verified)
○ Model adversarial environment with another (trusted)
○ Compound state machine models their interactions (trusted)

 System (environment assumption)

State machine strengths

Filesystem
(program to verify)

Disk
(environment
assumption)

26

Expressing a system as a state machine allows us to prove that it has certain
properties
● We will focus on safety properties

Basic tool: induction

● Show that the property holds on state 0
● Show that if the property holds on state k, it must hold on state k+1

Chapter 4: Proving properties

27

0 1 2 3 k k+1…

predicate Safety(v:Library) {
 true // TBD
}

lemma SafetyProof()
 ensures forall v :: Init(v) ==> Safety(v)
 ensures forall v, v' :: Safety(v) && Next(v, v') ==> Safety(v')
{
}

Let’s prove a safety invariant!

28

Base case

Inductive Step

Let’s prove a safety invariant!

29

Interactive proof development in editor
Bisection debugging,
case analysis,
existential instantiation

	EECS498-008 Formal Verification of Systems Software
	Some new Dafny syntax
	Some new Dafny syntax (2)
	Some new Dafny syntax (3)
	Some new Dafny syntax (4)
	Some new Dafny syntax (5)
	Administrivia
	Chapter 3: Building state machines
	Building state machines
	The Switch state machine
	The Switch state machine
	The Game of Nim
	The Nim state machine
	Slide 14
	A state is an assignment of values to variables
	An execution is an infinite sequence of states
	A behavior is the set of all possible executions
	How should we define a behavior?
	How should we define a behavior? (2)
	A state machine definition
	A behavior is the set of all possible executions
	State machine strengths
	State machine strengths (2)
	State machine strengths (3)
	State machine strengths (4)
	Chapter 4: Proving properties
	Let’s prove a safety invariant!
	Let’s prove a safety invariant! (2)

