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Some new Dafny syntax

9/19/22

Datatype member functions

datatype Pet = Dog | Cat | Ant | Spider {
  function CountLegs() : int {
    match this
      case Dog => 4
      case Cat => 4
      case Ant => 6
      case Spider => 8
  }
}

function ShoesForTwo(pet: Pet) : int {
  2 * pet.CountLegs()
}
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Calc statements

assert a == b;
assert b == c;
assert c == d;

calc {
  a;
  b;
  c;
  d;
}

Some new Dafny syntax

9/19/22
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Calc statements

assert a == b;
assert b == c;
assert c == d;

calc {
  a;
  { MyUsefulLemma(a,b); }
  b;
  c;
  d;
}

Some new Dafny syntax

9/19/22
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Calc statements

assert a == b;
assert b == c;
assert c == d;

calc ==> {
  a;
  { MyUsefulLemma(a,b); }
  b;
  c;
  d;
}

Some new Dafny syntax

9/19/22
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Choose operator

assert 1 % 7 == 1;
assert exists x :: x % 7 == 1;
var x :| x % 7 == 1;

Choose x such that...

Some new Dafny syntax

9/19/22
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Remember that Problem Set 1 is due this Friday

I’m still missing some of your pictures. Please send me your picture (
manosk@umich.edu) with the Subject “EECS498-008 picture”

Administrivia

9/19/22

mailto:manosk@umich.edu)
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Chapter 3: Building state 
machines
A state is an assignment of values to variables

An action is a transition from one state to another

An execution is a sequence of states

We will capture executions with state machines
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Building state machines
A state is an assignment of values to variables

An action is a transition from one state to another

An execution is a sequence of states

We will capture executions with state machines
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The Switch state machine
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The Switch state machine
predicate Activate(v:Variables, v':Variables) {
    v'.switch == On
}
predicate Deactivate(v:Variables, v':Variables) 
{
    v'.switch == Off 
}
predicate Toggle(v:Variables, v':Variables) {
    v'.switch == if v.switch.On? then Off else 
On
}
predicate Next(v:Variables, v':Variables) {
    || Activate(v, v') 
    || Deactivate(v, v') 
    || Toggle(v, v') 
}
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datatype SwitchState = On | Off
datatype Variables = 

Variables(switch:SwitchState)
predicate Init(v:Variables) {
    v.switch == Off 
}
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The Game of Nim

12

11 7

Play(3)

10

Play(1)

5

Play(2)

1

Play(4)



EECS498-008

The Nim state machine
datatype Variables = Variables(tokens:nat)
predicate Init(v:Variables) {
    v.tokens > 0
}

predicate Play(v:Variables, v':Variables, take:nat) {
    && 1 <= take <= 4
    && take <= v.tokens
    && v'.tokens == v.tokens - take
}

predicate Next(v:Variables, v':Variables)
{
    exists take :: Play(v, v', take)
}
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enabling condition
“update”
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A state is an assignment of values 
to variables

The state space is the set of possible assignments.

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Jon
Snow Crash: Jon

The Martian: Manos
Snow Crash: Jon

datatype Card = Shelf | Patron(name: 
string)
datatype Book = Book(title: string)
type Library = map<Book, Card>
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An execution is an infinite sequence of states

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Manos
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Jon

The Martian: Rob
Snow Crash: Jon

check out check out check in check out

The Martian: Shelf
Snow Crash: Shelf

The Martian: Jon
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

The Martian: Rob
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

check out check in check out check in

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Rob

check out ???
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A behavior is the set of all possible executions

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Manos
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Jon

The Martian: Rob
Snow Crash: Jon

check out check out check in check out

The Martian: Shelf
Snow Crash: Shelf

The Martian: Jon
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

The Martian: Rob
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Shelf

check out check in check out check in

The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Rob

check out ???
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How should we define a behavior?
With a program?

Its variables define its state space
Its executions define its behavior

Weaknesses:
● concreteness
● nondeterminism
● asynchrony
● environment
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How should we define a behavior?
With a state machine

Its type defines its state space
Its initial states and transitions define its behavior
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predicate Init(v: Library) {
  forall book | book in v :: v[book] == Shelf
}
predicate CheckOut(v : Library, v’ : Library, book: Book, name: string) {
  && book in v
  && v[book] == Shelf
  && (forall book | book in v :: v[book] != Patron(name))
  && v’ == v[book := Patron(name)]
}
predicate CheckIn(v : Library, v’ : Library, book: Book, name: string) {
  && book in v
  && v[book] == Patron(name)
  && v’ == v[book := Shelf]
}
predicate Next(v: Library, v’: Library) {
  || (exists book, name :: CheckOut(v, v’, book, name))
  || (exists book, name :: CheckIn(v, v’, book, name))
}

A state machine definition

Nondeterministic
definition

enabling condition

“update”
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datatype Card = Shelf | Patron(name: 
string)
datatype Book = Book(title: string)
type Library = map<Book, Card>



A behavior is the set of all possible executions
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The Martian: Shelf
Snow Crash: Shelf

The Martian: Shelf
Snow Crash: Jon

The Martian: Shelf
Snow Crash: Rob

check out ???

predicate CheckOut(v, v’, book, name) {
  && book in v
  && v[book] == Shelf
  && (forall book | book in v :: v[book] != 
Patron(name))
  && v’ == v[book := Patron(name)]
}
predicate CheckIn(v, v’, book, name) {
  && book in v
  && v[book] == Patron(name)
  && v’ == v[book := Shelf]
}



State machine strengths
● Abstraction

○ States can be abstract
■ Model an infinite map instead of an efficient pivot table

○ Next predicate is nondeterministic:
■ Implementation may only select some of the choices
■ Can model Murphy’s law (e.g. crash tolerance) or an adversary
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State machine strengths
● Abstraction
● Asynchrony

○ Each step of a state machine is conceptually atomic
○ Interleaved steps capture asynchrony: threads, host processes, adversaries
○ Designer decides how precisely to model interleaving; can refine/reduce
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● Abstraction
● Asynchrony
● Environment

○ Model a proposed program with one state machine (verified)
○ Model adversarial environment with another (trusted)
○ Compound state machine models their interactions (trusted)

  System (environment assumption)

State machine strengths

Filesystem
(program to verify)

Disk
(environment 
assumption)
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● Abstraction
● Asynchrony
● Environment

○ Model a proposed program with one state machine (verified)
○ Model adversarial environment with another (trusted)
○ Compound state machine models their interactions (trusted)

  System (environment assumption)

State machine strengths

Filesystem
(program to verify)

Disk
(environment 
assumption)
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Expressing a system as a state machine allows us to prove that it has certain 
properties
● We will focus on safety properties

Basic tool: induction

● Show that the property holds on state 0
● Show that if the property holds on state k, it must hold on state k+1

Chapter 4: Proving properties
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predicate Safety(v:Library) {
  true // TBD
}

lemma SafetyProof()
  ensures forall v :: Init(v) ==> Safety(v)
  ensures forall v, v' :: Safety(v) && Next(v, v') ==> Safety(v')
{
}

Let’s prove a safety invariant!
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Base case

Inductive Step



Let’s prove a safety invariant!
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Interactive proof development in editor
Bisection debugging,
case analysis,
existential instantiation
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