
EECS498-008
Formal Verification

of Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

EECS498-008

Recursion: exporting ensures
function Evens(count:int) : (outseq:seq<int>)
 ensures forall idx :: 0<=idx<|outseq| ==> outseq[idx] == 2 * idx
{
 if count==0 then [] else Evens(count) + [2 * (count-1)]
}

9/14/22

lemma myLemma(a:seq<int>)
 ensures Foo(a)
{
 myLemma(a[..|a|-1]);
 // proof about last element of a goes here
}

EECS498-008

Chapter 2 exercises
• Will be released tonight
• Deadline for PS1 (i.e. Chapters 1 and 2) is September 23, 11:59pm.

9/14/22

Karma is a word.
Another way of
saying “What I
am here to do”

Chapter 2: Specification

Specification

How to specify our programs
Attempt #1: Just tell your programmers what you want them to code

Writing is nature's way of letting you know how sloppy your thinking is
-Dick Guindon

How to specify our programs
Attempt #2: Write down an English description (aka a design doc)

Mathematics is nature's way of letting you know how sloppy your
writing is

-Leslie Lamport

Formal mathematics is nature's way of letting you know how sloppy
your mathematics is

-Leslie Lamport

Formal specification
A way to define formally (i.e. precisely) what your program should do

Before you start writing code, make sure you know what code is
supposed to be doing

Before you start writing a proof, make sure you know what you are
proving

Specification
A specification defines which executions are allowable
lemma Double(x:int) returns (y:int)
 ensures y == 2*x
{
 ...
}

(x=1, y=2)
(x=2, y=4)
(x=2, y=2)

(x=-3, y=-6)
(x=-2, y=4)

Ways to specify what the
program should do

• C-style assertions

• Postconditions

• Properties/invariants

• Refinement

lemma Double(x:int) returns
(y:int)
 ensures y == 2*x
{
 y := 2*x;
}

y = 2*x;
assert(y==2*x)

“At most one node holds the lock at any time”

• Linearizability
• Equivalence to logically centralized service

Specification is trusted
Formal verification: proving that your protocol or implementation
meets the spec

You cannot prove that the spec is
correct You have to trust your

spec Your proof is as good as
your spec

A wrong spec is one of the few ways to introduce
bugs into formally verified code

Check your spec

1. Check your spec!
2. Check your spec!
3. Check your spec!
4. Check your spec!
5. Check your spec! Now that should be your 1st,

2nd
, 3rd, 4th and 5th concern!

The benefit of specification
The spec is typically much smaller than the code
• So we have to inspect a few lines of code only

Dijkstra’s algorithm spec
IsShortestPath(g, p) {

&& IsPath(g, p)
&& forall p2 :: IsPath(g, p2) ==> |p| <= |p2|

}

A good spec
A good spec is correct/complete
• It precludes all undesirable behaviors

Example: IsMaxIndex
predicate IsMaxIndex(a:seq<int>, x:int) {
 && 0 < x < |a|
 && (forall i | 0 < i < |a| :: a[i] <= a[x])
}

A good spec (cont.)
A good spec is concise
• It elides every irrelevant concept
• Is simple and easy to read

predicate IsMaxIndex(a:seq<int>, x:int) {
 && 0 <= x < |a|
 && (forall i | 0 <= i < |a| :: a[i] <= a[x])
}

A good spec (cont.)
A good spec is abstract
• It doesn’t constrain the implementation

Dijkstra’s algorithm spec
IsShortestPath(g:Graph, p:Path) {

&& IsPath(g, p)
&& forall p2 :: IsPath(g, p2) ==> |p| <= |p2|

}

EECS498-008

Edsger W. Dijkstra
• 1972 Turing Award winner
• Inventor of:
• Dijkstra’s shortest path algorithm
• Semaphores
• The THE operating system
• Banker’s algorithm

• “Progress is possible only if we train
ourselves to think about programs
without thinking of them as pieces of
executable code.”

9/14/22

Verification and the
“eradication” of bugs
Frequent quote from verification experts
• “We prove that there are no bugs at all…”

Frequent quote from verification skeptics
• “Nonsense! You can still have bugs in your spec”

The truth is somewhere in the middle
• Yes, your spec may have bugs
• But do you prefer inspecting 30 lines for bugs or 30000?

	EECS498-008 Formal Verification of Systems Software
	Recursion: exporting ensures
	Chapter 2 exercises
	Chapter 2: Specification
	How to specify our programs
	How to specify our programs (2)
	Formal specification
	Specification
	Ways to specify what the program should do
	Specification is trusted
	Check your spec
	The benefit of specification
	A good spec
	A good spec (cont.)
	A good spec (cont.) (2)
	Edsger W. Dijkstra
	Verification and the “eradication” of bugs

