
EECS498-008
Formal Verification

of Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

01/26/2023 EECS498-008 2

01/26/2023 EECS498-008 3

AND THE REASON
WE DON T DO ’
THAT IS....

01/26/2023 EECS498-008 4

Defining the network
Network module
module Network {
 datatype Variables =
 Variables(sentMsgs: set<Message>)

 predicate Next(v, v’, msgOps:MessageOps) {
 // can only receive messages that have been sent
 && (msgOps.recv.Some? ==> msgOps.recv.value in
v.sentMsgs)
 // Record the sent message, if there was one
 && v'.sentMsgs ==
 v.sentMsgs + if msgOps.send.None? then {}
 else {msgOps.send.value}
 }
}

Distributed system

Host Host

Host Host

Network

datatype Option<T> = Some(value:T) | None
datatype MessageOps = MessageOps(

recv:Option<Message>,
send:Option<Message>)

01/26/2023 EECS498-008 5

A distributed system is composed of multiple hosts and a network
Distributed system: attempt #2
module DistributedSystem {
 datatype Variables =
 Variables(hosts:seq<Host.Variables>,
 network: Network.Variables)

 predicate HostAction(v, v’, hostid, msgOps) {
 && Host.Next(v.hosts[hostid],v'.hosts[hostid],msgOps))
 && forall otherHost:nat | otherHost != hostid ::
 v’.hosts[otherHost] == v.hosts[otherHost]
 }

 predicate Next(v, v’, hostid, msgOps: MessageOps) {
 && HostAction(v, v’, hostid, msgOps)
 && Network.Next(v, v’, msgOps)
 }
}

Distributed system

Host Host

Host Host

Network

Binding variable

01/26/2023 EECS498-008 6

Administrivia
• Midterm exam this Wednesday, 10/12

• 6-8pm, EECS1303
• No lecture that day

• Closed books
• Allowed one double-sided “cheat-sheet”, 10pt minimum

• Covers everything up to Chapter 4 (i.e. excluding distributed systems)

• Problem set 3 (Chapter 5) will be released later today
• Start looking for partners for Project 1 (released after PS3)

01/26/2023 EECS498-008 7

Atomic Commit (Problem Set 3)

-Do you take each other?
 -I do.
 -I do.
-I now pronounce you
atomically committed.

01/26/2023 EECS498-008 8

Atomic Commit: the objective

Preserve data consistency for distributed transactions

 Example: book a hotel and flight on Expedia

01/26/2023 EECS498-008 9

Atomic Commit: the setup
• One coordinator
• A set of participants

• Allowed to be empty in our model

• Every participant has an “input” value, called vote/preference

• Every participant/coordinator has an “output” value, called decision

• We are ignoring the possibility of failures

01/26/2023 EECS498-008 10

Atomic Commit: the spec (simplified
to ignore failures)

• AC-1: All processes that reach a decision reach the same one
• AC-3: The Commit decision can only be reached if all processes vote Yes
• AC-4: If there are no failures and all processes vote Yes, then the

decision must be Commit

AC-2 and AC-5 ignored

01/26/2023 EECS498-008 11

Two Phase Commit (2PC)

1. sends VOTE-REQ message to all participants

2. sends to coordinator
 if == No
 then := Abort

3. Wait for all votes to come in
 If all votes are Yes then

 := Commit
 Send Commit message to all
 else

 := Abort
 Send Abort message to all who voted Yes

4. If received Commit then
 := Commit
 else
 := Abort

01/26/2023 EECS498-008 12

Recap of Chapters 1-4
• Chapter 1: Dafny mechanics

• Primitive types, quantifiers, assertions, recursion, loop invariants, datatypes

• Chapter 2: Specification
• Formally define how a system should behave

• Chapter 3: State machines
• Express the behavior of a system using Init() and Next() predicates, JNF

• Chapter 4: Inductive invariants
• A strengthening of the safety property to become inductive

01/26/2023 EECS498-008 13

Safe states
(property P holds)

Reachable
states

Inductive
invariant

All states

Invariants vs
Inductive invariants

01/26/2023 EECS498-008 14

A distributed system is composed of multiple hosts, a network and clocks
Distributed system: attempt #3
module DistributedSystem {
 datatype Variables =
 Variables(hosts:seq<Host.Variables>,
 network: Network.Variables,
 time: Time.Variables)

 predicate Next(v, v’, hostid, msgOps: MessageOps, clk:Time) {
 || (&& HostAction(v, v’, hostid, msgOps)
 && Network.Next(v, v’, msgOps)
 && Time.Read(v.time, clk))
 || (&& Time.Advance(v.time, v’.time)
 && v’.hosts == v.hosts
 && v’.network == v.network)
 }
}

Distributed system

Host Host

Host Host

Network

Time

01/26/2023 EECS498-008 15

A “distributed” system
module DistributedSystem {
 datatype Variables =
 Variables(fs: FileSystem.Variables,
 disk: Disk.Variables)

 predicate Next(v, v’) {
 || (exists io ::
 && FileSystem.Next(v.fs, v’.fs, io)
 && Disk.Next(v.disk, v’.disk, io)
 || (// Crash!
 && FileSystem.Init(v’.fs)
 && v’.disk == v.disk
)
 }
}

Distributed system

File system
(in-memory state Disk

Binding variable

01/26/2023 EECS498-008 16

Trusted vs proven

Distributed system

Host Host

Host Host

Network

Distributed system

File system
(in-memory state Disk

Time

Network won’t
make up packets

Network might
reorder packets

Time only moves
forward

Disk won’t forget writes
it acknowledged

Disk might reorder
concurrent writes

Hosts cannot communicate
except through the network

Time can advance
between any host steps

File system (kernel)
can crash

01/26/2023 EECS498-008 17

 : the systems
specification sandwich

image: pixabay

trusted environment assumptions

trusted application spec

proof

proof
protocol

code

	EECS498-008 Formal Verification of Systems Software
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Administrivia
	Atomic Commit (Problem Set 3)
	Atomic Commit: the objective
	Atomic Commit: the setup
	Atomic Commit: the spec (simplified to ignore failures)
	Two Phase Commit (2PC)
	Recap of Chapters 1-4
	Invariants vs Inductive invariants
	Slide 14
	Slide 15
	Trusted vs proven
	: the systems specification sandwich

