GOMPUTER SCIENCE & ENGINEERING

EECS498-008
Formal Verification
of Systems Software

Material and slides created by

Jon Howell and Manos Kapritsos

01/26/2023

X Slides

Defining the network

Distributed system

Host

Network

Host

Host

Host

EECS498-008

COMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERING

datatype Option<T> = Some(value:T) | None

datatype MessageOps = MessageOps(
recv:Option<Message>,
send:Option<Message>)

Network module
module Network {

datatype Variables =
Variables(sentMsgs: set<Message>)

predicate Next(v, v’, msgOps:MessageOps) {

// can only receive messages that have been sent

&8 (msgOps.recv.Some? ==> msgOps.recv.value in v.sentMsgs)

// Record the sent message, if there was one

&8 v'.sentMsgs ==

v.sentMsgs + if msgOps.send.None? then {}

else {msgOps.send.value}

Deﬁning the network datatype Option<T> = Some(value:T) | None

COMPUTER SCIENCE & ENGINEERING

datatype MessageOps = MessageOps (
recv:0ption<Message>,
Network module send:Option<Message>)

module Network {
datatype Variables =
Variables(sentMsgs: set<Message>)

Distributed system

Host

Network

predicate Next(v, v’, msgOps:MessageOps) {
Host // can only receive messages that have been sent

Host

&& (msgOps.recv.Some? ==> msgOps.recv.value in
v.sentMsgs)

// Record the sent message, if there was one

Host && v'.sentMsgs ==

v.sentMsgs + if msgOps.send.None? then {}

else {msgOps.send.value}

COMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts and a network

Distributed system: attempt #2
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,

Distributed system

Host

network: Network.Variables)

predicate HostAction(v, v’, hostid, msgOps) {

Network

Host && Host.Next(v.hosts[hostid],v'.hosts[hostid],msgOps))

Host

&& forall otherHost:nat | otherHost != hostid ::
v’ .hosts[otherHost] == v.hosts[otherHost]

Host

predicate Next(v, v’, hostid, msgOps: MessageOps) {

&& HostAction(v, v’, hostid, miggggL:::>-Bnuﬁngvaﬁabka

&& Network.Next(v, v'’, msgOps)

'COMPUTER SCIENCE & ENGINEERING
Administrivia

* Midterm exam this Wednesday, 10/12
e 6-8pm, EECS1303
* No lecture that day

* Closed books
e Allowed one double-sided “cheat-sheet”, 10pt minimum

e Covers everything up to Chapter 4 (i.e. excluding distributed systems)

* Problem set 3 (Chapter 5) will be released later today
e Start looking for partners for Project 1 (released after PS3)

'COMPUTER SCIENCE & ENGINEERING
Atomic Commit (Problem Set 3)

-Do you take each other?
-| do.
-l do.
-l now pronounce you
atomically committed.

COMPUTER SCIENCE & ENGINEERING
Atomic Commit: the objective

Preserve data consistency for distributed transactions

Example: book a hotel and flight on Expedia

COMPUTER SCIENCE & ENGINEERING
Atomic Commit: the setup

* One coordinator

* A set of participants
* Allowed to be empty in our model

* Every participant has an “input” value, called vote/preference
vote; € {Yes, No}

* Every participant/coordinator has an “output” value, called decision
decision; € {Commit, Abort}

* We are ignoring the possibility of failures

COMPUTER SCIENCE & ENGINEERING
Atomic Commit: the spec (simplified

to ignore failures)

* AC-1: All processes that reach a decision reach the same one
* AC-3: The Commit decision can only be reached if all processes vote Yes

e AC-4: If all processes vote Yes, then the
decision must be Commit

AC-2 and AC-5 ignored

COMPUTER SCIENCE & ENGINEERING
Two Phase Commit (2PC)

Particpant p

1. sends VOTE-REQ message to all participants

\

3. Wait for all votes to come in /
If all votes are Yes then

decision,. = Commit
Send Commit message to all

else \ 4. If received Commit then

decision,. := Abort ved Lom :
Send Abort message to all who voted Yes elsciecwwn’t = Commit

decision; := Abort

2. sends vote; to coordinator
if vote; == No
then decision; := Abort

01/26/2023 EECS498-008 11

COMPUTER SCIENCE & ENGINEERING
Recap of Chapters 1-4

* Chapter 1: Dafny mechanics

* Primitive types, quantifiers, assertions, recursion, loop invariants, datatypes
* Chapter 2: Specification

* Formally define how a system should behave

* Chapter 3: State machines
* Express the behavior of a system using Init() and Next() predicates, JNF

* Chapter 4: Inductive invariants
* A strengthening of the safety property to become inductive

Invariants vs
Inductive invariants

GOMPUTER SCIENCE & ENGINEERING

/v.

O

Reachable D\Snducﬁve
states invariant

All states

Safe states
(property P holds)

COMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts, a network and clocks

Distributed system: attempt #3
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,

. network: Network.Variables,
Distributed system time: Time.Variables)
Host Host predicate Next(v, v’, hostid, msgOps: MessageOps, clk:Time) {
Network || (&& HostAction(v, v', hostid, msgOps)
&& Network.Next(v, v’', msgOps)
Time && Time.Read(v.time, clk))
Host Host || (&& Time.Advance(v.time, v'.time)
&& v’ .hosts == v.hosts
&& v’ .network == v.network)

A “distributed” system

Distributed system

File system
(in-memory state

Disk

datatype Variables

module DistributedSystem {

COMPUTER SCIENCE & ENGINEERING

Variables(fs: FileSystem.Variables,

disk: Disk.Variables)

(exists io ::
&& FileSystem.Next(v.fs, v’'.fs, Bopinding variable
&S Disk.Next(v.disk, v’.disk, io)

(// Crash!
&& FileSystem.Init(v'.fs)

)

&& v’ .disk

predicate Next(v, v’) {

v.disk

COMPUTER SCIENCE & ENGINEERING
Trusted vs proven

Time can advance File system (kernel)
between any host steps can crash
Distributed system Distributed system

Network
Network might / - Disk
reorder packets ‘ \

Disk might reorder

concurrent writes
|

01/26/2023 EECS498-008 16

COMPUTER SCIENCE & ENGINEERING
SHECIECATION S : the systems
Specification sandw|ch

usted application spec

N
trusted environment assumptions

image: pixabay

01/26/2023 EECS498-008 17

	EECS498-008 Formal Verification of Systems Software
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Administrivia
	Atomic Commit (Problem Set 3)
	Atomic Commit: the objective
	Atomic Commit: the setup
	Atomic Commit: the spec (simplified to ignore failures)
	Two Phase Commit (2PC)
	Recap of Chapters 1-4
	Invariants vs Inductive invariants
	Slide 14
	Slide 15
	Trusted vs proven
	: the systems specification sandwich

