GOMPUTER SCIENCE & ENGINEERING

EECS498-008
Formal Verification
of Systems Software

Material and slides created by

Jon Howell and Manos Kapritsos

COMPUTER SCIENCE & ENGINEERING

Leader electio 90

o
;1

01/26/2023 EECS498-008 2

Leader electio

01/26/2023 EECS498-008 3

COMPUTER SCIENCE & ENGINEERING

01/26/2023 EECS498-008 4

'COMPUTER SCIENCE & ENGINEERING
Administrivia

* Midterm exam next Wednesday, 10/12
* 6-8pm, EECS1303
* No lecture that day

* Closed books
* Allowed one double-sided cheat-sheet, 10pt minimum

e Covers everything up to Chapter 4 (i.e. excluding distributed systems)

* Problem set 3 (Chapter 5) will be released on Monday, 10/10

'COMPUTER SCIENCE & ENGINEERING
Introduction to distributed

systems
What is a distributed system?

A collection of distinct processes that:

* are spatially separated

* communicate with one another by exchanging messages
* have non-negligible communication delay

* do not share fate

* have separate, imperfect, unsynchronized physical clocks

'COMPUTER SCIENCE & ENGINEERING
Leader election

...as a distributed, asynchronous system

COMPUTER SCIENCE & ENGINEERING
New Dafny syntax: modules

Modules allow us to break up our code into multiple parts

module A {
predicate MyPredicate() { ... }

}

module B {
import A
predicate MySecondPredicate() { A.MyPredicate() }

GOMPUTER SCIENCE & ENGINEERING

Modeling distributed systems

A distributed system is composed of multiple hosts

Distributed system

Host

Host

Host

Host

Distributed System: attempt #1
module DistributedSystem {
datatype Variables =

Variables(hosts:seq<Host.Variables>)

predicate Next (v:Variables, v’:Variables, hostid: nat) {
&& Host.Next(v.hosts[hostid],v'.hosts[hostid]))
&& forall otherHost:nat | otherHost != hostid ::

v'.hosts[otherHost]

v.hosts[otherHost]

COMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts and a network

Distributed system: attempt #2
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,

Distributed system

Host

network: Network.Variables)

predicate HostAction(v, v’, hostid, msgOps) {

Network

Host && Host.Next(v.hosts[hostid],v'.hosts[hostid],msgOps))

Host

&& forall otherHost:nat | otherHost != hostid ::
v’ .hosts[otherHost] == v.hosts[otherHost]

Host

predicate Next(v, v’, hostid, msgOps: MessageOps) {

&& HostAction(v, v’, hostid, miggggL:::>-Bnuﬁngvaﬁabka

&& Network.Next(v, v'’, msgOps)

Deﬁning the network datatype Option<T> = Some(value:T) | None

COMPUTER SCIENCE & ENGINEERING

datatype MessageOps = MessageOps (
recv:0ption<Message>,
Network module send:Option<Message>)

module Network {
datatype Variables =
Variables(sentMsgs: set<Message>)

Distributed system

Host

Network

predicate Next(v, v’, msgOps:MessageOps) {
Host // can only receive messages that have been sent

Host

&& (msgOps.recv.Some? ==> msgOps.recv.value in
v.sentMsgs)

// Record the sent message, if there was one

Host && v'.sentMsgs ==

v.sentMsgs + if msgOps.send.None? then {}

else {msgOps.send.value}

COMPUTER SCIENCE & ENGINEERING

A distributed system is composed of multiple hosts, a network and clocks

Distributed system: attempt #3
module DistributedSystem {
datatype Variables =
Variables(hosts:seq<Host.Variables>,

. network: Network.Variables,
Distributed system time: Time.Variables)
Host Host predicate Next(v, v’, hostid, msgOps: MessageOps, clk:Time) {
Network || (&& HostAction(v, v', hostid, msgOps)
&& Network.Next(v, v’', msgOps)
Time && Time.Read(v.time, clk))
Host Host || (&& Time.Advance(v.time, v'.time)
&& v’ .hosts == v.hosts
&& v’ .network == v.network)

A “distributed” system

Distributed system

File system
(in-memory state

Disk

datatype Variables

module DistributedSystem {

COMPUTER SCIENCE & ENGINEERING

Variables(fs: FileSystem.Variables,

disk: Disk.Variables)

(exists io ::
&& FileSystem.Next(v.fs, v’'.fs, Bopinding variable
&S Disk.Next(v.disk, v’.disk, io)

(// Crash!
&& FileSystem.Init(v'.fs)

)

&& v’ .disk

predicate Next(v, v’) {

v.disk

COMPUTER SCIENCE & ENGINEERING
Trusted vs proven

Time can advance File system (kernel)
between any host steps can crash
Distributed system Distributed system

Network
Network might / - Disk
reorder packets ‘ \

Disk might reorder

concurrent writes
|

01/26/2023 EECS498-008 14

COMPUTER SCIENCE & ENGINEERING
SHECIECATION S : the systems
Specification sandw|ch

usted application spec

N
trusted environment assumptions

image: pixabay

01/26/2023 EECS498-008 15

	EECS498-008 Formal Verification of Systems Software
	Leader election
	Leader election (2)
	Leader election (3)
	Administrivia
	Introduction to distributed systems
	Leader election (4)
	New Dafny syntax: modules
	Modeling distributed systems
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Trusted vs proven
	: the systems specification sandwich

