
EECS498-008
Formal Verification

of Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

01/26/2023 EECS498-008 2

Leader election

id
35

id
23

id
40

id
86

id
11

-1

-1

-1-1

-1

01/26/2023 EECS498-008 3

id
35

id
23

id
40

id
86

id
11

-1

-1

-1-1

-1 23

86

40

35

86

40

Leader election

01/26/2023 EECS498-008 4

id
35

id
23

id
40

id
86

id
11

-1

-1

-1-1

-1 23

40

35

35

86

Leader election

01/26/2023 EECS498-008 5

Administrivia
• Midterm exam next Wednesday, 10/12

• 6-8pm, EECS1303
• No lecture that day

• Closed books
• Allowed one double-sided cheat-sheet, 10pt minimum

• Covers everything up to Chapter 4 (i.e. excluding distributed systems)

• Problem set 3 (Chapter 5) will be released on Monday, 10/10

01/26/2023 EECS498-008 6

Introduction to distributed
systems
What is a distributed system?

A collection of distinct processes that:
• are spatially separated
• communicate with one another by exchanging messages
• have non-negligible communication delay
• do not share fate
• have separate, imperfect, unsynchronized physical clocks

01/26/2023 EECS498-008 7

id
23

id
40

-1

-1

Leader election
...as a distributed, asynchronous system

01/26/2023 EECS498-008 8

New Dafny syntax: modules
Modules allow us to break up our code into multiple parts

module A {
predicate MyPredicate() { ... }

}

module B {
import A
predicate MySecondPredicate() { A.MyPredicate() }

}

01/26/2023 EECS498-008 9

Modeling distributed systems
A distributed system is composed of multiple hosts

Distributed system

Host Host

Host Host

Distributed System: attempt #1
module DistributedSystem {
 datatype Variables =
 Variables(hosts:seq<Host.Variables>)

 predicate Next (v:Variables, v’:Variables, hostid: nat) {
 && Host.Next(v.hosts[hostid],v'.hosts[hostid]))
 && forall otherHost:nat | otherHost != hostid ::
 v’.hosts[otherHost] == v.hosts[otherHost]
 }
}

01/26/2023 EECS498-008 10

A distributed system is composed of multiple hosts and a network
Distributed system: attempt #2
module DistributedSystem {
 datatype Variables =
 Variables(hosts:seq<Host.Variables>,
 network: Network.Variables)

 predicate HostAction(v, v’, hostid, msgOps) {
 && Host.Next(v.hosts[hostid],v'.hosts[hostid],msgOps))
 && forall otherHost:nat | otherHost != hostid ::
 v’.hosts[otherHost] == v.hosts[otherHost]
 }

 predicate Next(v, v’, hostid, msgOps: MessageOps) {
 && HostAction(v, v’, hostid, msgOps)
 && Network.Next(v, v’, msgOps)
 }
}

Distributed system

Host Host

Host Host

Network

Binding variable

01/26/2023 EECS498-008 11

Defining the network
Network module
module Network {
 datatype Variables =
 Variables(sentMsgs: set<Message>)

 predicate Next(v, v’, msgOps:MessageOps) {
 // can only receive messages that have been sent
 && (msgOps.recv.Some? ==> msgOps.recv.value in
v.sentMsgs)
 // Record the sent message, if there was one
 && v'.sentMsgs ==
 v.sentMsgs + if msgOps.send.None? then {}
 else {msgOps.send.value}
 }
}

Distributed system

Host Host

Host Host

Network

datatype Option<T> = Some(value:T) | None
datatype MessageOps = MessageOps(

recv:Option<Message>,
send:Option<Message>)

01/26/2023 EECS498-008 12

A distributed system is composed of multiple hosts, a network and clocks
Distributed system: attempt #3
module DistributedSystem {
 datatype Variables =
 Variables(hosts:seq<Host.Variables>,
 network: Network.Variables,
 time: Time.Variables)

 predicate Next(v, v’, hostid, msgOps: MessageOps, clk:Time) {
 || (&& HostAction(v, v’, hostid, msgOps)
 && Network.Next(v, v’, msgOps)
 && Time.Read(v.time, clk))
 || (&& Time.Advance(v.time, v’.time)
 && v’.hosts == v.hosts
 && v’.network == v.network)
 }
}

Distributed system

Host Host

Host Host

Network

Time

01/26/2023 EECS498-008 13

A “distributed” system
module DistributedSystem {
 datatype Variables =
 Variables(fs: FileSystem.Variables,
 disk: Disk.Variables)

 predicate Next(v, v’) {
 || (exists io ::
 && FileSystem.Next(v.fs, v’.fs, io)
 && Disk.Next(v.disk, v’.disk, io)
 || (// Crash!
 && FileSystem.Init(v’.fs)
 && v’.disk == v.disk
)
 }
}

Distributed system

File system
(in-memory state Disk

Binding variable

01/26/2023 EECS498-008 14

Trusted vs proven

Distributed system

Host Host

Host Host

Network

Distributed system

File system
(in-memory state Disk

Time

Network won’t
make up packets

Network might
reorder packets

Time only moves
forward

Disk won’t forget writes
it acknowledged

Disk might reorder
concurrent writes

Hosts cannot communicate
except through the network

Time can advance
between any host steps

File system (kernel)
can crash

01/26/2023 EECS498-008 15

 : the systems
specification sandwich

image: pixabay

trusted environment assumptions

trusted application spec

proof

proof
protocol

code

	EECS498-008 Formal Verification of Systems Software
	Leader election
	Leader election (2)
	Leader election (3)
	Administrivia
	Introduction to distributed systems
	Leader election (4)
	New Dafny syntax: modules
	Modeling distributed systems
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Trusted vs proven
	: the systems specification sandwich

