
EECS498-008
Formal Verification

of Systems Software
Material and slides created by

Jon Howell and Manos Kapritsos

EECS498-008 2

About me
Manos Kapritsos (manosk@umich.edu)
Areas of research: Formal Verification, Distributed Systems

28 years old (well, maybe not in decimal)

Disclaimer
Any resemblance to purple-looking super
villains, living or dead, is purely coincidental

8/29/22

mailto:manosk@umich.edu)

EECS498-008 3

About me

8/29/22

EECS498-008 4

About you and me
• I love teaching and interacting with my students

• I want to get to know you all by name
• Send me your picture by email (manosk@umich.edu)

• Use subject ”EECS498-008 picture”

• I’m here to help. Come to me with any question!
• course-related: office hours (Tuesday, 11am-12pm, BBB 4824)
• Life, The Universe, and Everything: any time

8/29/22

EECS498-008 5

If you need more help...
Our TA, Armin Vakil, is here to help

A Jedi Master in Formal Verification
Office hours: 2-3pm Thursday, Learning Center, Table 2
8/29/22

EECS498-008 6

The unseen hero
Jon Howell, VMWare Research

Co-designer of the material in this course

8/29/22

“Bugs, unit tests, gdb. The dark side are they.”

“Testing not make one great.”

EECS498-008 7

Agenda for Today
• Why learn formal verification?

• Course syllabus and logistics

• What is formal verification?
• (and other, similar approaches)

• Getting started with Dafny

8/29/22

EECS498-008 8

Why learn formal verification?

EECS280/281

EECS482

High-level programming

OS-level programming

EECS491 Distributed programming

We have taught you how to write and test programs

8/29/22

EECS498-008 9

Real-world systems are too complex
to test

[Mickens 2013]

8/29/22

EECS498-008 10

Despite tremendous effort...

BUGS

“not one of the properties claimed
invariant in [PODC] is actually

invariantly true of it.”

[Zave 2015]

8/29/22

11

Is it possible to write code that is
completely bug-free?

Formal verification is as close as we can get

EECS498-008 12

March 25, 2015
(or how I became a believer)

• One day before the deadline of SOSP’15, we had not yet run our code

• ...and yet our code ran correctly the first time we ran it!
• (and every time afterwards)

8/29/22

EECS498-008 13

How will you benefit from this
class?
• It will make you a better programmer
• Whether you end up writing verified code or not

• You will learn to specify your code
• To express your intent clearly and unambiguously
• Just like design docs, but better

• You will learn important concepts
• E.g. inductive invariants, refinement

• Get ahead of the curve
• Learn an emerging skill

8/29/22

EECS498-008 14

Objectives of this class
• Understand the fundamentals of formal verification
• Learn how they apply in a (distributed) systems context
• Get hands-on experience with proving systems correct
• Become familiar with a practical verification language

8/29/22

EECS498-008 15

Prerequisites

• Experience with distributed or asynchronous systems
• i.e. EECS482

• I will explain the mechanics of any distributed systems in the class
for those of you that haven’t taken EECS491

• No verification experience required

If anything is unclear, do not hesitate to ask

8/29/22

EECS498-008 16

About this class
• Disclaimer: this class is not formally verified!

• This is the first time I am teaching this class
• ...or rather, anyone is teaching this class

• ...or rather, anyone is teaching a class on this material

• There is no textbook (anywhere!)
• Jon and I will write one based on the experience from this class

8/29/22

EECS498-008 17

Class material
• Class webpage
• https://verification.eecs.umich.edu

• Syllabus, lecture slides, problem sets and projects will be posted on
the class webpage

• Subscribe yourself to Piazza
• Announcements and class discussion

8/29/22

https://verification.eecs.umich.edu/

EECS498-008 18

Enrollment
• Current cap at 40 with a few people on the waitlist

• I’m working to increase the cap (and perhaps add a second lab)

8/29/22

EECS498-008 19

Lectures
• Lectures will be held in person in DOW 1017

• Recordings will be posted at:
http://leccap.engin.umich.edu/leccap/site/p3kt6ubmxl1hk61vfm0
(link is also on course web page and Piazza)

• I will be posting slides of each lecture (shortly) before the lecture, in
case you want to keep notes directly on the slides

8/29/22

http://leccap.engin.umich.edu/leccap/site/p3kt6ubmxl1hk61vfm0
http://leccap.engin.umich.edu/leccap/site/p3kt6ubmxl1hk61vfm0
http://leccap.engin.umich.edu/leccap/site/p3kt6ubmxl1hk61vfm0

EECS498-008 20

Lectures schedule
• Material is divided into eight chapters
• Chapters 1-5 (before midterm) cover the basic concepts of verification

• Basic verification and Dafny mechanics
• Specification
• Centralized state machines
• Proving properties and inductive invariants
• Distributed state machines

• Chapters 6-8 (after midterm) cover refinement proofs and advanced topics
• Refinement
• Asynchronous clients
• Application correspondence

8/29/22

EECS498-008 21

Problem sets and projects
• There are four (programming) problem sets and two projects
• Problem sets will be done individually
• Projects will be done in groups of 1-2 students

• All deliverables will be submitted via the autograder.io website
• They use a combination of auto-grading and hand-grading

(this is where I warn you about how hard the projects are, but...)

8/29/22

EECS498-008 22

Policies
• Submission
• Three submissions per day to the autograder
• Due at midnight on deadline
• Three late days throughout the semester

• Collaboration
• Okay to clarify problem or discuss Dafny syntax
• Not okay to discuss solutions

8/29/22

EECS498-008 23

Exams
• Midterm: October 12, 6-8pm
• Final: December 12, 10:30am-12:30pm

• No makeup exams
• Except in dire circumstances
• Make sure you schedule your interviews appropriately

8/29/22

EECS498-008 24

Grading breakdown
• Problem sets: 30%
• PS1: 8%
• PS2: 8%
• PS3: 8%
• PS4: 6%

• Projects: 30%
• Project 1: 15%
• Project 2: 15%

• Midterm exam: 20%
• Final exam: 20%
8/29/22

EECS498-008 25

What is formal verification?
• Step 1: Specify the correctness of the system formally
• Step 2: Prove that the implementation conforms to the spec

If the spec expresses your correctness property,
then your system is correct, subject to any
assumptions you have made during your proof

8/29/22

EECS498-008 26

Other approaches
Testing: run the system with a large and/or representative set of inputs to
determine if it behaves correctly
• Quality depends on acumen of test designer
• Infeasible to achieve complete coverage for complex systems

Model checking: Model the system and ensure all possible states are safe
• Correctness depends on how accurate the model is
• Does not scale well to complex systems, especially those with infinite

state spaces, like distributed systems

8/29/22

27

Statically checking for
correctness
What we want is a “static correctness check”, akin to a static type check

You write your code normally, but if you introduce bugs the checker will
tell you

When the checker complains, you have to spend some time to convince
it that your code is right---if indeed it is

28

Using a Theorem Prover
Express the execution of the system and its correctness as a mathematical
formula (done automatically by the language)

Give the formula to a theorem prover, effectively asking:
”If the system behaves this way, is it possible for its correctness to be
violated?”

A negative answer means the system is proven to be correct
A positive answer means there is still work to do, either:
• the system is indeed incorrect
• the proof is incomplete

29

 Using Dafny

• We will be using Dafny as our verification language
• Dafny is an imperative language designed with formal verification in mind
• ...and plenty of functional language features

• Dafny uses an SMT solver (Z3) to automate verification to a large degree
• ...but it needs our help sometimes

• Most of the high-level skills are transferrable...
• ...but some are specific to Dafny and/or automation

EECS498-008 30

Dafny in Docker
• We provide you with a Docker container that has Dafny pre-installed
• Makes it easy to get started
• Ensures everyone is using the same Dafny version as the autograder

• Download and run it like this:
• docker pull ekaprits/eecs498-008
• docker container run --mount
src=$PWD,target=/home/autograder/working_dir,type=bind,readonly -t -i
ekaprits/eecs498-008

• CAEN machines don’t support Docker, yet
• If you don’t have access to a machine that can run Docker, contact me ASAP

8/29/22

EECS498-008 31

Things to do
• Browse the course web page

• Subscribe to Piazza

• Install Docker, pull image, run image

8/29/22

	EECS498-008 Formal Verification of Systems Software
	About me
	About me (2)
	About you and me
	If you need more help...
	The unseen hero
	Agenda for Today
	Why learn formal verification?
	Real-world systems are too complex to test
	Despite tremendous effort...
	Slide 11
	March 25, 2015
	How will you benefit from this class?
	Objectives of this class
	Prerequisites
	About this class
	Class material
	Enrollment
	Lectures
	Lectures schedule
	Problem sets and projects
	Policies
	Exams
	Grading breakdown
	What is formal verification?
	Other approaches
	Statically checking for correctness
	Using a Theorem Prover
	Using Dafny
	Dafny in Docker
	Things to do

